

Dissolved gases as an indicator of denitrification process in shallow groundwater in agricultural landscape

Marcela Gonzalez¹

Ranvir Singh¹, Neha Jha¹, and Andrew McMillan² ¹Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand ²Manaaki Whenua-Landcare Research, Palmerston North, New Zealand Email: m.gonzalez@massey.ac.nz

Presentation structure

- 1. Nitrate attenuation In groundwater
- 2. Experimental design and data analysis
- 3. Results
- 4. Summary
- 5. Conclusion

1. Nitrate in groundwater

UNIVERSITY OF NEW ZEALAND

Table 1: Location, geological setting and land use of the study sites.

Site Code	DFP		SC		ARM		SR		BUR		CAM	
Area of sampling site	Palmerston North		Santoft		Woodville		Pahiatua		Pahiatua		Dannevirke	
Piezometer №, Depth (m, bgl)*	P1 P2 P3	5.9 7.8 9.0	P1 P2 P3	6.4 3.4 5.2	P1 P2 P3	5.3 5.9 7.8	P1 P2 P3	4.7 5.7 6.7	P1 P2 P3	3.6 4.3 6.1	P1 P2	4.8 7.7
Land use	Dairy		Dairy		Beef/Sheep		Dairy		Dairy		Dairy	
Soil type**	Manawatu fine sandy loam		Foxton brown sand- Pukepuke black sand Himitangi sand		Kairange silt Ioam and clay Ioam		Kopua stony silt loam		Kopua stony silt loam		Takapau silt Ioam	
Rock type**	ck type** Alluvium		San	nd flat Alluviu		vium	Loess over gravel		Loess over gravel		Loess gra	over vel
*Screen depth (m, bgl) = 0.5 m on each piezometer												

**Collins et al, 2018, Rivas et al, 2015

2. Experimental design and data analysis

Methodology and measurements analyzed over 6 months of study and a set of push and pull test at each site during wet season.

Measurements	Methodology	Parameter
Chemical Analysis	Monthly sampling	NO ₃ ⁻ , Br ⁻ , SO ₄ ²⁻ , Fe ²⁺ , DO, DOC
Dissolved gas analysis	Push and Pull Test	N_2O and N_2
Excess N ₂	MIMS (NIWA)	N ₂ from subsurface denitrification

2. Experimental design and data analysis

UNIVERSITY OF NEW ZEALAND

One set of Push and Pull Test was developed in the deepest piezometer at each site.

A 100 L of groundwater was pumped, added a source of nitrate (KNO₃) and a tracer (KBr) to obtain a final concentration of 10 mg (NO₃-N) \cdot L⁻¹.

Samples were collected every 30 minutes for 2.5 hours and then every hour until 5.5 hours of sampling.

Gas chromatograph system (Shimadzu Corp, Kyoto, japan), electron capture detector (ECD), flameionization detector (FID) and thermal conductivity detector (TCD) (McMillan *et al.*, 2014).

3. Results

14.0

12.0

10.0

8.0 6.0

4.0

2.0

0.0

2 3

DF

1

DOC (mg L⁻¹)

Dissolved organic carbon, dissolved oxygen, iron and nitrate average concentration over 6 months of study (March-September) at each site. Values are given in mg L^{-1}

Nitrate

2

CAM

1

3

2 3

SR

2 3

BUR

1

¢AM

1

2

ARM

1

3

1

2

DF

2 3

SC

23

BUR

1

2 3 1

ARM

3

CAM

1

1 2 3

SR

2 3

SC

1

3. Excess N₂ analysis

• Excess N₂ calculation (Weymann et al, 2008)

$$X_{\text{ExcessN}_2} = X_{\text{N}_2\text{T}} - X_{\text{N}_2\text{EA}} - X_{\text{N}_2\text{EQ}}$$

X: Molar concentration of the parameters. $N_2 T = Total dissolved N_2$ in the groundwater sample. $N_2 EA = N_2$ from excess air. $N_2 EQ = Dissolved N_2$ in equilibrium with the atmospheric concentration.

• N₂ from excess air (Weymann et al, 2008)

$$X_{N_2EA} = \left(X_{ArT} - X_{ArEQ}\right) * \left(\frac{X_{N_2 atm}}{X_{Ar atm}}\right)$$

 N_2 atm = atmospheric mole fraction of N_2

Ar atm = atmospheric mole fraction of Ar.

Ar T = total dissolved Ar in the groundwater sample.

Ar EQ = Dissolved Ar in equilibrium with the atmospheric concentration

• Uncertainty \rightarrow Recharge temperature

UNIVERSITY OF NEW ZEALAND

Monthly values for Excess N_2 (3 months) and N_2O (6 average of months).

■ JUNE ■ AUGUST ■ SEPTEMBER □ N2O

Site and piezometer

Site	Redox status	Reduced NO ₃ ⁻ (%)	Total Excess N ₂ (umol/L)	N ₂ O/(Excess N ₂ + N ₂ O)	Type of denitrification
DFP I	Anoxic, NO ₃ -N, Mn (IV) and Fe (III) reduction	37	259.07 ± 0.79	0.0020	Complete
SC III	Anoxic, NO ₃ -N, Mn (IV) reduction	1.4	-	-	-
ARM I	Anoxic, NO ₃ -N, Mn (IV) and Fe (III) reduction	9.8%	166.35 ± 0.55	0.0008	Complete
CAM III	Anoxic, NO ₃ -N, Mn (IV) reduction	7.3%	406.45 ± 1.36	0.0004	Complete
SR III	Oxic, O2 reduction	51%	202.12 ± 4.47	0.0016	Partial
BUR II	Oxic, O2 reduction	57%	86.93 ± 0.42	0.0064	Partial

Correlation Analysis

UNIVERSITY OF NEW ZEALAND

Parameter	DO	DOC	Fe ²⁺	Mn ²⁺	SO ₄ ²⁻	NO ₃ -	N ₂ O	N ₂	Excess N ₂
DO	*	-0.32	-0.64	-0.51	0.13	0.77	0.36	-0.63	-0.53
DOC	-0.32	*	0.48	0.21	0.58	-0.15	-0.02	0.64	0.59
Fe ²	-0.64	0.48	*	0.36	-0.10	-0.57	-0.28	0.60	0.75
Mn²	-0.51	0.21	0.36	*	-0.09	-0.41	-0.06	0.58	0.69
SO ₄ ²⁻	0.13	0.58	-0.10	-0.09	*	0.31	-0.07	0.33	-0.07
NO ₃	0.77	-0.15	-0.57	-0.41	0.31	*	0.46	-0.60	-0.47
N ₂ O	0.36	-0.02	-0.28	-0.06	-0.07	0.46	*	-0.35	-0.24
N ₂	-0.63	0.64	0.60	0.58	0.33	-0.60	-0.35	*	0.63
Excess N ₂	-0.53	0.59	0.75	0.69	-0.07	-0.47	-0.24	0.63	*

5. Conclusions

- DFP (I, II, III), ARM (I, II, III), SC (I, II, III), and CAM (III) site present suitable mixed and anoxic condition for complete subsurface denitrification to occur. More concentration of electron donors (Fe³⁺) and low concentrations of DOC.
- BUR (I, II, III), SR (I, II, III), and CAM (I) site present unsuitable oxic conditions thus, subsurface denitrification is energetically unfavorable.
- Excess N₂ values are high at anoxic sites indicating complete subsurface denitrification and vice verse.
- Oxic sites show increment of N₂O during push and pull test and low excess N₂ (ratio), indicating partial subsurface denitrification.

We greatly appreciate the funding and support from National Science Center Our Land and Water, New Zealand Agricultural Greenhouse Gas Research Center (NZAGRC), Massey Fertilizer and Lime Research Center (FLRC), and Horizons Regional Council.

- Thomas, S. Watreland, H., Dann, R. Close, M. Francis, G. Cook F. 2011. Nitrous oxide dynamics in a deep soil-alluvial gravel vadose zone following nitrate leaching. Soil and Water Management and Conservation. Soil Science Society of America Journal.
- STATS NZ, 2018. New Zealand's Environmental Reporting Series: Environmental indicators Te taiao Aotearoa
- Collins, S. (2015). Investigating the Transport and Fate of Nitrogen from Farms to River in the Lower Rangitikei Catchment. (Master of Science), Massey University, New Zealand.
- McMillan, A., Phillips, R., Berben, P., Thilak, P., Jha, N., & Saggar, S. (2014). Automated N2O/N2 analysis- a new tool for studying denitrification dynamics and testing mitigation strategies. In L. D. Currie & C. L. Christensen (Eds.), Nutrient Management for the Farm, Catchment and Community Occasional