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Aims for this project

This project is part of “Our Land & Water” National Science Challenge

• Our challenge was to develop a national coverage of groundwater redox 
status to assist management of land & water resources and to contribute 
to national scale modelling of effects

Our aim for this initial part of the project was to develop the best possible 
predictive model of redox status, to make robust predictions

➢ Needs to be applied to areas with sparse WQ data



Why is groundwater redox status 
important?

• A key groundwater contaminant in NZ is nitrate

• Increased land use intensity is increasing groundwater nitrate levels,  

leading to adverse impacts on lakes and lowland streams

• Only permanent removal process for N is denitrification 

• Groundwater redox status is the key factor which determines whether 

denitrification will take place within a particular area of a groundwater 

system



Sample redox status assignment

• Classify sample redox status using NO3, Mn, Fe, SO4 and DO 

modified system of McMahon & Chapelle (2008)

• 3 redox classes: Oxic Reduced Mixed

➢ Oxic → High NO3, SO4, DO; Low Mn, Fe 

➢ Reduced →  Low NO3, SO4, DO; High Mn, Fe

➢ Mixed →  High Mn; Low NO3, Fe classed as mixed 

• Approach previously applied to Waikato, Canterbury, Southland

• Regions in current study are Waikato, Wellington, Tasman



Study Areas

Tasman Wellington Waikato

Sampled % Sampled % Sampled %

Oxic 598 86.8 376 81.2 375 63.8

Mixed 39 5.7 38 8.2 105 17.9

Reduced 52 7.5 49 10.6 108 18.4

Wells Sampled 689 463 588



Insert redox map for Wellington



Spatial Attributes

Spatial Attribute Mapped Scale Data Source Reference

Groundwater depth 1000m raster GNS: supplied Westerhoff et al. (2018)

Land surface recharge 1000m raster Westerhoff (2017)
Main rock 1:50 000 GNS: QMap Rattenbury and Heron (1997)
Sub rock
Geological age

Soil order 1:50 000 Landcare: SMap & Fundamental Soil Layer Hewitt (2010), Lilburne et al. (2012)

Soil drainage
Newsome et al. (2008)

Soil Cmax 1:63 360 Landcare: NZ Fundamental Soil Layer Newsome et al. (2008)
Soil Cmin

Rainfall 500m raster NIWA: supplied Tait & Woods (2007)
PET Woods et al. (2006)
AET

Mean annual low flow 500m raster MfE: data generated by NIWA
Snelder & Biggs (2002)
Booker (2013 & 2015)

Mean flow
February flow
Fre3 flow

Landuse 1:50 000 Landcare: LUCAS NZ Land Use Map 2012 Newsome et al. (2013)

Nitrogen leaching 100m raster MfE: data generated by AgResearch Dymond et al. (2013)
Elevation 8m raster Geographx 8m DEM Geographx (2012)
Land slope

• Discrete data
• Continuous data



Spatial Attributes

Spatial Attribute Mapped Scale Data Source Reference

Groundwater depth 1000m raster GNS: supplied Westerhoff et al. (2018)

Land surface recharge 1000m raster Westerhoff (2017)
Main rock 1:50 000 GNS: QMap Rattenbury and Heron (1997)
Sub rock
Geological age

Soil order 1:50 000 Landcare: SMap & Fundamental Soil Layer Hewitt (2010), Lilburne et al. (2012)

Soil drainage
Newsome et al. (2008)

Soil Cmax 1:63 360 Landcare: NZ Fundamental Soil Layer Newsome et al. (2008)
Soil Cmin

Rainfall 500m raster NIWA: supplied Tait & Woods (2007)
PET Woods et al. (2006)
AET

Mean annual low flow 500m raster MfE: data generated by NIWA
Snelder & Biggs (2002)
Booker (2013 & 2015)

Mean flow
February flow
Fre3 flow

Landuse 1:50 000 Landcare: LUCAS NZ Land Use Map 2012 Newsome et al. (2013)

Nitrogen leaching 100m raster MfE: data generated by AgResearch Dymond et al. (2013)
Elevation 8m raster Geographx 8m DEM Geographx (2012)
Land slope

Initial 22 
reduced to 
14 using 
correlation 
matrix



Prediction approach

• Redox assignment (response variable) ↔ spatial attributes (predictors)

• Previously used Linear Discriminant Analysis (LDA)

• Close, M.; Abraham, P.; Humphries, B.; Lilburne, L.; Cuthill, T.; Wilson S. 2016. Predicting Groundwater 
Redox Status on a Regional Scale using Linear Discriminant Analysis. Journal of Contaminant 
Hydrology 191: 19–32.

• Wilson, S., Close, M., Abraham, P., 2018. Applying Linear Discriminant Analysis to predict groundwater 
redox conditions conducive to denitrification. Journal of Hydrology 556: 611-624.

• For this study we compared predictions using LDA to those using 
nonlinear methods - Random Forest (RF) & Boosted Regression trees

• No significant improvement in the solutions!

➢ But all models were strongly influenced by data bias



Sources of bias

• Spatial bias (clustering)

• Depth bias (predominantly shallow)

• Sample selection bias (65-85% oxic)

• Attribute bias 

➢ Samples unevenly distributed among spatial 
attribute categories

➢ Sampling <1 % of the unique attribute combinations
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Sample Selection Bias

Attribute bias removed from the RF model using cForest

➢ but still had massive issues with the bias from sample selection bias

Skewness in the distribution of WQ data – predominantly sampling oxic
groundwater

If you have 80% oxic water, you get ~80% predictive accuracy from the 
model due to dominance of one class of response variable

➢ but not a good model (null case test)

➢ Cohen’s Kappa metric – gives model predictive power taking random 
agreement into account (possibility of agreement due to chance)



Sample Selection Bias

Model Tasman 
(84% Oxic)

Wellington 
(80% Oxic)

Waikato 
(65% Oxic)

Accuracy Kappa Accuracy Kappa Accuracy Kappa

cForest (null) 0.84 0 0.80 0 0.65 0

cForest (Attrib. 
bias adjusted)

0.84 0.14 0.81 0.13 0.66 0.10

LDA 0.87 0.28 0.84 0.34 0.67 0.22

• Model predictive agreement is slight to fair (perfect agreement =1)

• Randomly deleting response variable data to improve proportions 

increases Kappa, but decreases accuracy



Hybrid Machine Learning workflow

1. Development

Unsupervised learning - mapping & 

self-organization of redox & predictor 

variables on hypersurface (75% data)

Metaheuristics - selection of predictor 

variables by supervised machine 

learning (KNN) into genetic algorithm

Performance metrics - Kappa statistic 

(class), cross-validation (continuous)

2. Generalisation

• Prediction - simultaneous redox 
probability with holdout predictor 
variables (25% data)

• Performance metrics – Kappa statistic 
(class), cross-validation (continuous)

3. Prediction

Simultaneous redox probability with 
independent predictor variables at 
130,000+ locations 

Iterative 
Process



ML Model performance

Hybrid model performs superbly for both accuracy and kappa metrics

Model Tasman 
(84% Oxic)

Wellington 
(80% Oxic)

Waikato 
(65% Oxic)

Accuracy Kappa Accuracy Kappa Accuracy Kappa

cForest (null) 0.84 0 0.80 0 0.65 0

cForest (Attrib. 
bias adjusted)

0.84 0.14 0.81 0.13 0.66 0.10

LDA 0.87 0.28 0.84 0.34 0.67 0.22

Hybrid 1.0 1.0 0.92 0.98 0.76 0.87





Conclusions

• Beware the effect of sample selection bias on statistical model development!

• Prediction for attribute combinations outside model range can be very low 

➢ Significant issue as we extend our predictions to national coverage

• New Hybrid ML approach successfully overcomes these sources of bias

• Next steps:

➢ Regionalise the data (group areas of similarity & move away from council 
boundaries)

➢ Apply the approach to these regions to achieve a national coverage of 
regional scale maps


