

Investigation of methods to predict groundwater redox status

Scott Wilson, Mike Friedel, Murray Close, Phil Abraham, Laura Banasiak

LINCOLN AGRITECH^{TTD}

Aims for this project

This project is part of "Our Land & Water" National Science Challenge

• Our challenge was to develop a national coverage of groundwater redox status to assist management of land & water resources and to contribute to national scale modelling of effects

Our aim for this initial part of the project was to develop the best possible predictive model of redox status, to make robust predictions

Needs to be applied to areas with sparse WQ data

Why is groundwater redox status important?

- A key groundwater contaminant in NZ is nitrate
- Increased land use intensity is increasing groundwater nitrate levels, leading to adverse impacts on lakes and lowland streams
- Only permanent removal process for N is denitrification
- Groundwater redox status is the key factor which determines whether denitrification will take place within a particular area of a groundwater system

Sample redox status assignment

• Classify sample redox status using NO₃, Mn, Fe, SO₄ and DO

modified system of McMahon & Chapelle (2008)

- 3 redox classes: Oxic Reduced Mixed
 - > Oxic High NO₃, SO₄, DO; Low Mn, Fe \rightarrow
 - \succ Reduced \rightarrow Low NO₃, SO₄, DO; High Mn, Fe
 - > Mixed High Mn; Low NO₃, Fe classed as mixed \rightarrow
- Approach previously applied to Waikato, Canterbury, Southland
- Regions in current study are Waikato, Wellington, Tasman

Study Areas

	Tasman		Wellington		Waikato	
	Sampled	%	Sampled	%	Sampled	%
Oxic	598	86.8	376	81.2	375	63.8
Mixed	39	5.7	38	8.2	105	17.9
Reduced	52	7.5	49	10.6	108	18.4
Wells Sampled	689		463		588	

E/S/R Science for Communities

Spatial Attributes

Spatial Attribute	Mapped Scale	Data Source	Reference
Groundwater depth	1000m raster	GNS: supplied	Westerhoff et al
Land surface recharge	1000m raster		Westerhoff (201
Main rock Sub rock Geological age	1:50 000	GNS: QMap	Rattenbury and
Soil order	1:50 000	Landcare: SMap & Fundamental Soil Layer	Hewitt (2010), Li Newsome et al.
Soil C _{max} Soil C _{min}	1:63 360	Landcare: NZ Fundamental Soil Layer	Newsome et al.
Rainfall PET AFT	500m raster	NIWA: supplied	Tait & Woods (20 Woods et al. (20
Mean annual low flow Mean flow February flow Fre3 flow	500m raster	MfE: data generated by NIWA	Snelder & Biggs Booker (2013 &
Landuse	1:50 000	Landcare: LUCAS NZ Land Use Map 2012	Newsome et al.
Nitrogen leaching Elevation Land slope	100m raster 8m raster	MfE: data generated by AgResearch Geographx 8m DEM	Dymond et al. (2 Geographx (201)

- l. (2018)
- 17) Heron (1997)
- ilburne et al. (2012) (2008)
- (2008)
- .007)
- 006)
- (2002) 2015)

- Discrete data
- Continuous data

- (2013)
- 2013)
- .2)

Spatial Attributes

Spatial Attribute	Mapped Scale	Data Source	Reference
Groundwater depth	1000m raster	GNS: supplied	Westerhoff et al. (2018
Land surface recharge	1000m raster		Westerhoff (2017)
Main rock	1:50 000	GNS: QMap	Rattenbury and Heron
Sub rock			
Geological age			
Soil order	1:50 000	Landcare: SMap & Fundamental Soil Layer	Hewitt (2010), Lilburne
			Newsome et al. (2008)
Soil drainage			
Soil C _{max}	1:63 360	Landcare: NZ Fundamental Soil Layer	Newsome et al. (2008)
Soil C _{min}			
Rainfall	500m raster	NIWA: supplied	Tait & Woods (2007)
PET			Woods et al. (2006)
AET			
			Snelder & Biggs (2002)
Mean annual low flow	500m raster	MfE: data generated by NIWA	Booker (2013 & 2015)
Mean flow			
February flow			
Fre3 flow			
Landuse	1:50 000	Landcare: LUCAS NZ Land Use Map 2012	Newsome et al. (2013)
Nitrogen leaching	100m raster	MfE: data generated by AgResearch	Dymond et al. (2013)
Elevation	8m raster	Geographx 8m DEM	Geographx (2012)
Land slope			

- (2018)
- Heron (1997)
- ilburne et al. (2012) (2008)
- (2008)
- 007)
- 06)
- (2002) 2015)

Initial 22 reduced to 14 using correlation matrix

LINCO

Prediction approach

- Redox assignment (response variable) \leftrightarrow spatial attributes (predictors)
- Previously used Linear Discriminant Analysis (LDA)
 - Close, M.; Abraham, P.; Humphries, B.; Lilburne, L.; Cuthill, T.; Wilson S. 2016. Predicting Groundwater • Redox Status on a Regional Scale using Linear Discriminant Analysis. Journal of Contaminant Hydrology 191: 19–32.
 - Wilson, S., Close, M., Abraham, P., 2018. Applying Linear Discriminant Analysis to predict groundwater • redox conditions conducive to denitrification. Journal of Hydrology 556: 611-624.
- For this study we compared predictions using LDA to those using nonlinear methods - Random Forest (RF) & Boosted Regression trees
- No significant improvement in the solutions!
 - > But all models were strongly influenced by data bias

Sources of bias

- Spatial bias (clustering)
- Depth bias (predominantly shallow) ullet
- Sample selection bias (65-85% oxic)
- Attribute bias \bullet
 - attribute categories

Samples unevenly distributed among spatial

\succ Sampling <1 % of the unique attribute combinations

Sources of bias

- Spatial bias (clustering)
- Depth bias (predominantly shallow) ullet
- Sample selection bias (65-85% oxic) •
- Attribute bias
 - Samples unevenly distributed among attribute categories
 - Sampling <1 % of the unique attribute combinations

Sample Selection Bias

Attribute bias removed from the RF model using cForest

> but still had massive issues with the bias from sample selection bias

Skewness in the distribution of WQ data – predominantly sampling oxic groundwater

If you have 80% oxic water, you get ~80% predictive accuracy from the model due to dominance of one class of response variable

- but not a good model (null case test)
- Cohen's Kappa metric gives model predictive power taking random agreement into account (possibility of agreement due to chance)

Sample Selection Bias

Model	Tasman (84% Oxic)		Wellington (80% Oxic)		
	Accuracy	Карра	Accuracy	Карра	
cForest (null)	0.84	0	0.80	0	
cForest (Attrib. bias adjusted)	0.84	0.14	0.81	0.13	
LDA	0.87	0.28	0.84	0.34	

- Model predictive agreement is slight to fair (perfect agreement =1)
- Randomly deleting response variable data to improve proportions increases Kappa, but decreases accuracy

 $\Xi/S/R$

Science for Communities

Waikato (65% Oxic) Accuracy Карра 0 0.65 0.66 0.10 0.67 0.22

Hybrid Machine Learning workflow **E/S/R**

1. Development

Unsupervised learning - mapping & self-organization of redox & predictor variables on hypersurface (75% data) **Metaheuristics** - selection of predictor variables by supervised machine learning (KNN) into genetic algorithm **Performance metrics** - Kappa statistic (class), cross-validation (continuous)

2. Generalisation

- Prediction simultaneous redox variables (25% data)

3. Prediction

Simultaneous redox probability with independent predictor variables at 130,000+ locations

probability with holdout predictor

• **Performance metrics** – Kappa statistic (class), cross-validation (continuous)

ML Model performance

Hybrid model performs superbly for both accuracy and kappa metrics

Model	Tasman (84% Oxic)		Wellington (80% Oxic)		Waikato (65% Oxic)	
	Accuracy	Карра	Accuracy	Карра	Accuracy	Карра
cForest (null)	0.84	0	0.80	0	0.65	0
cForest (Attrib. bias adjusted)	0.84	0.14	0.81	0.13	0.66	0.10
LDA	0.87	0.28	0.84	0.34	0.67	0.22
Hybrid	1.0	1.0	0.92	0.98	0.76	0.87

Conclusions

- Beware the effect of sample selection bias on statistical model development!
- Prediction for attribute combinations outside model range can be very low \succ Significant issue as we extend our predictions to national coverage
- New Hybrid ML approach successfully overcomes these sources of bias
- Next steps:
 - \succ Regionalise the data (group areas of similarity & move away from council) boundaries)
 - \succ Apply the approach to these regions to achieve a national coverage of regional scale maps

