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Summary and highlights 
 

 This project ran for 2 years and was a partnership between two National Science 
Challenges: Our Land and Water, and Deep South. The common aim was to assist land 
managers and natural resource planners to assess the resilience of agricultural land uses 
across New Zealand and to inform decision making for land and water management 
regarding future climate. 

 This project explored the likely impact of climate on the suitability of some primary 
production activities. It had two aims: 
 to identify the climate attributes influencing the productivity and the impacts on 

receiving environments,  
 to explore future climate projections to understand the potential impacts of long-

term average changes and droughts on production and receiving environments. 
 We evaluated a range of simple to complex biophysical models (including climate 

indices, WATYIELD, Biome-BGC, APSIM) to simulate several production systems (pasture, 
crop, horticulture) and project into the future the changes in some production attributes 
and the impacts on receiving environments, in particular nitrate leaching. 

 Three spatial scales were tested: point-scale for application of complex biophysical 
modelling (APSIM) in three regions (Hawke’s Bay, Southland, Waikato), regional scale 
(Hawkes Bay for moderately complex biophysical models (Biome-BGC and WATYIELD) 
and national scale for simple climate indices. 

 Through this modelling exercise and statistical analysis, we identified and ranked some 
key attributes influencing pasture production:  
 Analysis of the APSIM-based modelling results showed that 82% of the variation in 

annual pasture production could be explained, with climate attributes accounting for 
45% of the variability 

 For the Biome-BGC-based modelling results, a similar degree of variation was 
explained (89%), with most of this variation explained by the climate attributes. 

 We also explored key climate attributes that could influence nitrogen (N) leaching 
events. A preliminary analysis showed that: 
 the influence of climate attributes varied across soil types and regions. However, one 

attribute in particular, the Standardised Potential Evapotranspiration index averaged 
over 3 months from July to September (SPEI3-Sept) showed some consistency in 
explaining N leaching, pointing to a provisional attribute to consider for further 
analysis. 

 Long-term (mid to end of century) and extreme event impacts for the three studied 
sectors are summarised in the table below, with key points in the following paragraphs. 
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Production Receiving environments 

Pastoral farming Shift in production towards spring 
Higher yields with increasing RCP trajectory 
(3 locations) 
In the Hawke’s Bay: reduction in yield 
during summer in some locations (West 
and North), increase in yield in spring 
everywhere 
Livestock: higher risk of heat stress for 
animals, especially in the Waikato, 
Wairarapa and Canterbury plains 

Higher variability in N leaching depending on 
soil types 
Higher water demand in the Waikato, no 
change in Southland 
In the Hawke’s Bay: higher water limitation 
during spring and summer (especially West 
of the region) 

Arable crops  
(maize and catch 
crop wheat) 

Maize: 
Earlier sowing date for maize silage across 
regions, leading to higher catch crop yields 
No change in maize yield after accounting 
for earlier sowing date 
Higher soil N uptake 

Maize: 
Higher variability in N leaching (frequency 
and magnitude) 
Higher water demand in Waikato, Hawke’s 
Bay 
More variability in water demand in 
Southland 

Horticultural 
crops (perennial) 

Wine grape: 
Earlier flowering time across New Zealand, 
leading to higher risk on wine quality 

Kiwifruit: 
Higher water demand in the Waikato and 
Hawke’s Bay 
More variability in water demand in 
Southland 

 

 Long-term average changes in climate were analysed for pastoral systems.  
 For the 3 locations in Hawke’s Bay, Waikato and Southland, using APSIM future 

yields were greater than present yields, with increasing Representative 
Concentration Pathways (RCP) trajectory. Increases were greatest and least variable 
in Southland, and lowest and more variable in Hawke’s Bay. More importantly, we 
showed changes in the projected distribution of pasture growth. Towards the end of 
the century, the projected growth rates showed a marked increase in late 
spring/early summer, with a decrease in late summer (January and February) 
especially in the Waikato and Hawke’s Bay case studies. Southland shows a general 
monthly growth rate increase except during winter. 

 For the Hawke’s Bay region using Biome-BGC, results were consistent with the 
complex biophysical model APSIM. Annual pasture yield increased in all scenarios, 
with a seasonal shift (more production in spring, and less in late spring-summer). 
However, the western side of Hawke’s Bay looked more affected by the loss of 
production in summer. Despite the overall increase in yield, there is a trend towards 
increasing water limitation, which could have implications for irrigation and water 
demand in a region that is already prone to drought. 

 For maize production, the assumed adaptation of sowing dates and maize genotype 
implied that the two crops experiences different magnitudes of warming during growth 
due to climate change. For an end of century period, this ranged from 0.2°C in the 
Hawke’s Bay up to 2.1°C for the catch crop wheat in Waikato. Maize crops were sown 
around 3 weeks earlier for end of century RCP8.5 compared to the baseline. This enables 
earlier sowing of the next crop (catch crop wheat), which enables longer growth periods 
and higher yields during winter. Climate change had minimal effects on maize yields 
except for a slight increase in Hawke’s Bay. In contrast, catch crop wheat increased by 
about 3 t/ha with the highest emission scenario.  
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 Wine grapes – Maps of flowering dates were produced for the whole country using the 
Grape Flowering Veraison model. The climate change projections and the increase in 
average temperature is estimated to shift the flowering date. Results for the sauvignon 
blanc variety show a shift by up to 2 weeks before the baseline flowering date. The 
model that was developed is spatially explicit, and can explore different varieties, 
allowing some future analyses on which variety may be more suitable to grow in the 
different parts of the country. 

 Heat stress index – heat stress is an increased risk for animal health that may be of 
concern in the future. The risk is more prevalent for RCP8.5 than RCP2.6, with up to two 
more weeks of moderate heat stress, spread across the country. For severe heat stress, 
the risk is also increasing for all RCPs, with more pronounced risk towards the end of the 
century. The change in average days per year for RCP8.5 is more pronounced in regions 
that are already at risk, in particular: along the coast of the Hawke’s Bay and Gisborne 
areas, mid-Canterbury, central Otago and central North Island. 

 We explored the potential consequences of future climate scenarios on nitrate leaching 
for pasture and maize cropping: 
 Nitrate leaching for the three locations showed that in all cases, nitrate leaching 

tended to be higher and more variable with increasing RCP trajectory. The most 
noticeable changes were in Southland where leaching may increase from 5 to 25 kg 
N-NO3 ha–1 yr–1. Variability in results was also due to the soil type. In Hawke’s Bay, 
the Ruataniwha soil tend to have lower leaching level due to an impenetrable pan. In 
contrast, the Waimakariri soil tended to have the highest and most extreme year-to-
year variability. 

 Maize. Estimates of N leaching at 90-cm depth were very variable. The inter-annual 
variability was shown to be a key metric to consider as N leaching losses could be 
more affected by extreme events without necessarily large changes in median 
values.     

 Changes in water stress on production due to drought:  
 We tested several drought indices against annual pasture biomass production. The 

ability of the seasonal SPEI values to explain annual pasture dry matter production 
was very variable across locations, soil types and Global Climate Models (GCMs). For 
instance, the seasonal SPEI could explain up to 61% of pasture growth results in the 
Hawkes Bay soil that did not have an impeded layer.   

 At a regional scale, the modelled pasture production is particularly sensitive to 
changes in precipitation. The relative soil moisture was used as an indicator of drier-
than-average conditions. The indicator varied greatly between GCMs, with some 
GCMs (e.g. HaGEM-2, GFDL and CESM1) showing drier soil conditions towards the 
end of the century. However, this indicator did not correlate well with pasture yield, 
suggesting that other factors (such as CO2 fertilisation) may dominate the plant 
response in the model. 

 changes in water stress risk for maize production system differed among locations, 
crops and soils in the different climate change scenarios. More drought-prone 
rainfed systems occurred in Hawke’s Bay where crops had about 30% of their water 
demand fulfilled. Catch crops were less affected due to their growth during late 
autumn/winter.  
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 The water balance model WATYIELD highlighted an increase in all regions in the 
Potential Evapotranspiration Deficit (PED), an indicator of water demand for crops. The 
increase was more prominent in the Waikato and Southland region with increases up to 
40% from the baseline. The Hawke’s Bay is already a region with high PED, with changes 
in future climate projection highlighting even more water demand.  

 Adaptation can involve tactical, strategic or transformational changes. For dairy farming, 
short-term tactical changes include bringing in feed or installing irrigation. For sheep and 
beef farming systems, changes are more difficult in the hill country where topography 
prevents tactical fertiliser use or irrigation. Strategic changes involve changing a current 
system to another known system, e.g. changing the ratio of sheep to cattle or increasing 
lambing percentage and can take many years. All these potential changes may alter the 
level of impacts on receiving environments. Results for arable crops highlight the 
relevance of accounting for crop management, which can be seen as a representation of 
farmer tactic adaptation on climate change impacts. In addition, insights on the 
importance of soil types, and how they are represented in biophysical simulations, are 
also key results from our analysis. Some soils will be naturally more prone to the increase 
in drought conditions, but final outcomes depend on management aspects (e.g. use of 
irrigation and changes to sowing dates).  

 For perennial crops such as wine grapes, the effect of climate change on phenology may 
require a change in cultivar, with grape varieties adapted to warmer climate. One area of 
concern is the compressed time for fruit growth and the implications for sugar content 
and ultimately wine quality. Tactical adaptation may require controlling the 
vegetative/floral balance through winter pruning, or additional pruning in summer. 
However, the warmer climate may also open new areas suitable for wine grapes that 
were previously too cool. The model and script that was developed is spatially explicit, 
and can explore different varieties, allowing some future analyses on which variety may 
be more suitable to grow in different parts of the country. With the increased risk of 
water shortage, especially in regions such as Hawke’s Bay, better use of irrigation water 
will be a necessity. 

 Our results highlighted the need to better understand the implications of future climate 
on receiving environment: preliminary results show that there is a risk of increased water 
demand that will put pressure on freshwater ecosystems, especially in the Hawke’s Bay 
region. Nitrate leaching events may also be more variable and more extreme with the 
increase in extreme rainfall events. The soil type is a crucial element that contributes to 
the likelihood of leaching events. For example, the magnitude and frequency of high N 
leaching events might increase if high rainfall amounts occur more often before catch 
crop establishment (early in the autumn/winter season). 

 We recommend continuing the work undertaken here through a continued partnership 
between Our Land and Water and Deep South National Science Challenge, to better 
understand relative land use suitability in the context of climate change. In particular, 
future areas of work should include: 
 continuing to explore the influence of climate attributes on nitrate leaching, 

including timing of extreme events 
 continuing to explore the likely impacts and implications of drought in regions most 

at risk  
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 broadening the perspective on receiving environments by looking at the potential 
impacts on sediment loss, phosphorus loss and faecal contaminants. 
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Glossary and definitions 
AET  Actual ET, derived from WATYIELD using NIWA’s PET data. 

AET-PET Actual ET - potential ET, derived from WATYIELD. 

ET – PET The difference between actual evapotranspiration (ET) and potential 
evapotranspiration (PET) per season. Sourced as an output from the Biome-BGC model 

GCM  General Circulation Models. Six GCMs have been selected for dynamical 
downscaling for New Zealand climates 

BCC-CSM1.1 
CESM1-CAM5 
GFDL-CM3 
GISSE2-R 
HadGEM2-ES 
NorESM1-M 

GDD (growing degree days) Accumulated heat units above a certain base temperature.  

GLF (Growth Limiting Factor – Water)  Calculated in APSIM. Water Supply as a Growth 
Limiting Factor, where 0 = no effect and 1 = high effect (note that this value is the opposite 
to GLF as outputted by APSIM). 

PCP  Annual rainfall (precipitation), obtained from NIWA climate data.  

PED  Potential Evapotranspiration Deficit, defined as the difference between 
estimated evapotranspiration and rainfall. Values were derived from WATYIELD. 

PET  Annual potential evapotranspiration, obtained from NIWA climate data.   

RAW  Readily available water, obtained from S-map. 

Relative Soil Moisture   Average soil moisture as a fraction of field capacity, presented 
on a seasonal basis. Sourced as an output from the Biome-BGC model.  

SPEI (Standardised Potential Evapotranspiration Index) The Standardized Precipitation 
Evapotranspiration Index (SPEI) is an extension of the widely used Standardized Precipitation 
Index (SPI). The SPEI is designed to take into account both precipitation and potential 
evapotranspiration (PET) in determining drought (Vicente-Serrano & National Center for 
Atmospheric Research Staff 2015). 

TAW  Total available water, obtained from S-map. 
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1 Introduction and background 

Future climate is likely to have a major impact on primary sectors and has the potential to 
drive major shifts in land use as previously suitable and viable climatic conditions change.  

1.1 Production/contaminant losses are important 

Sustainable productivity has two requirements, sustained productivity (potentially quantified 
as yield and/or profitability) of primary enterprises, and sustained achievement of 
environmental objectives at the site of production and in downstream receiving 
environments. These two requirements are frequently in conflict and have resulted in 
undesirable environmental outcomes (Arpaia et al. 2004; Parris 2011; McDowell et al. 2016). 
To minimise conflicts between productivity and environmental objectives, land-use decisions 
should be more closely based on information about land suitability, crop and stock 
requirements, and in particular risks of contaminant loss from land.  

The attributes and constraints of climate and land (soil, topography and hydrology) are all 
primary factors affecting productivity potential under different land uses. Climate and land 
factors also interact with land use to affect the export of contaminants to adjoining receiving 
environments (e.g. nitrate leaching to groundwater, sediment and phosphorus losses, faecal 
contaminants). As climate is an important determinant of the physiological potential of 
plants to produce biomass and of the risk of losses to receiving environments, it is essential 
to factor in the added complexity of a changing climate and the suitability of land for certain 
activities. In the past, research in New Zealand has focused on the long-term effect of climate 
change on productivity for some key primary sectors including pastoral farming, cropping 
(maize) and forestry. This was investigated during the Climate Change Impacts and 
Implications (CCII) research programme (2012–16). A series of outputs included downscaled 
climate scenarios for New Zealand, based on the latest Global Circulation Models (GCM), 
biophysical and economic models, and scenarios of New Zealand futures under a range of 
emissions, policy and socioeconomic pathways. However, the programme had limited in-
depth analysis of model outputs and did not focus on extreme events, looking instead at 
long-term climate change effects on primary production.  

1.2 National Science Challenge background 

In this context, two National Science Challenges have teamed up to address this issue. The 
OLW National Science Challenge is charged with the development of tools that assist land 
managers and natural resource planners to predict the suitability of land for different uses in 
different environmental settings. The land use suitability (LUS) concept has been defined as a 
framework for assessing the suitability of land for primary production that acknowledges and 
accounts for the connections between land use and economic, environmental, social, and 
cultural impacts (McDowell et al. 2018). These researchers recently expanded the land use 
suitability concept to include productivity within environmental constraints, with a particular 
focus on water quality outcomes. Their framework encompasses the productivity potential of 
land parcels, their contribution of contaminants to downstream receiving environments and 
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the pressure imposed by those contaminants in the receiving environments. There are plans 
to further develop and refine the LUS concept in Tranche 2 of the OLW National Science 
Challenge.  

The Deep South (DS) National Science Challenge, on the other hand, aims to enable New 
Zealanders to adapt, manage risk and thrive in a changing climate. Part of this includes 
understanding the potential impacts and implications of climate change to support planning 
and decision-making. Primary production is the backbone of New Zealand’s economy, and 
there is an opportunity to bring both challenges together to consider impacts of climate 
change on land use suitability. Our chief aim is to assess where and how climate change 
needs to be considered in long-term policy such as the National Policy Statement on 
Freshwater Management (NPS-FM) and forecasting trends and variability in agricultural 
production. To achieve this, a project was built as a partnership between the OLW and DS 
National Science Challenges. The aim is to include the effects of climate change impacts 
(long-term climate change and extreme events such as droughts) within the land use 
suitability tools, to assess the resilience of agricultural land uses across New Zealand and to 
inform decision making for land and water management with regard to future climate. 

This report summarises the outcomes from this project that ran from March 2017 to June 
2019.   

2 Objectives 

The primary aim of this research project is to answer the question: ‘how will future climate 
impact on land use suitability?’.  In this project, we endeavoured to identify climate attributes 
that strongly underpin land use suitability, and test how these attributes would change under 
future climate scenarios, with some conclusions on both biophysical and socio-economic 
implications. This knowledge will help to fill important gaps by addressing both the impacts 
of extreme events and effects of longer-term climate change impacts on Land Use Suitability 
by encompassing impacts on productivity as well as losses of contaminants to receiving 
environments.  

Ideally, complex biophysical models would be applied at any point in the landscape and for 
various crop systems. However, there is no single model for the different agricultural 
systems, and the models available in New Zealand are time-consuming to run and are still 
being actively developed by the research community. We therefore took a tiered approach 
to fill the knowledge gap in both production and impacts on the environment, by using a 
suite of simple to complex models and test their utility to inform decision makers on future 
projections. 

This report addresses two main goals: 

 Identify climate attributes (both for changes in average seasonal patterns and drought) 
that may affect production and impacts to receiving environment in selected crops and 
variables 

 Model the impacts of climate change on a selection of production and impact to the 
environment variables and crops at point, region, national scale. 
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3 Methods 

3.1 Overarching framework 

We have investigated a range of metrics that would explain how climate may influence land 
use suitability in terms of production or impact on receiving environments through simple to 
complex biophysical models. While complex biophysical models may be closer to reality, 
they are more demanding for input data and processing time. They offer, however, a better 
insight into the management adaptation options that might be available to farmers. Simple 
metrics or bioclimatic models are less demanding and can be run on a larger scale. They do 
not reflect management practices variation but can inform on generic trends at a sectoral 
level (Fig. 1).  

In our case, we chose to apply the APSIM model that has been extensively developed for 
pastoral systems and maize cropping. It is a highly complex but well-supported modelling 
platform in the research space. Because it is data-intensive, we restricted the modelling runs 
to three locations in the Hawke’s Bay, Waikato and Southland region. 

For the horticultural sector, limited resources prevented us from using a complex biophysical 
model such as SPASMO. We therefore developed bioclimatic indices at national scale to 
inform on the general trends (Figure 1 and Table 1). 

Table 1. Model input requirements and level of complexity 

Model Complexity Process CO2 fertilisation Management 

APSIM High ✓ ✓ ✓ 
Biome-BGC Intermediate ✓ ✓ ✗ 
WATYIELD Intermediate ✓ ✗ ✗ 
Bioclimatic indices Low ✗ ✗ ✗ 
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Figure 1. Scope of analyses: scale vs models used per sector. 
 

The future climate will likely impact primary production in terms of changes to the mean 
climate (temperature, CO2 concentration and rainfall patterns), but also changes to extreme 
temperature and drought frequency (Table 2). For long-term changes, we investigated the 
impact of future climate on production (pasture, maize), phenology (wine grape), and nitrate 
leaching (pasture maize). For the drought and extreme event issue, this report could not 
cover all potential impacts in all sectors, but has investigated drought impacts on production 
(pasture, maize), water demand (pasture, maize, kiwifruit) and looked at the potential impact 
of heat stress on animals. 

Table 2. Scope of impact results 
 

Production Receiving environment 

Long-term changes 
to weather patterns 

Impact of future climate projections on yield, 
growth rates (pasture, maize) (section 4.1.1 and 
4.1.2) 
Impact of temperature changes on wine 
phenology (Section 4.3.2) 

Impact on nitrate leaching (pasture, 
maize) (section 4.1.1 and 4.1.2) 

Changes in extreme 
events  

(drought, hot days) 

Impact of drought events on pasture growth 
(Section 4.1.1 and 4.2.1) 
Impact of temperature and humidity changes 
on heat stress for animals (Section 4.3.1) 

Impact of drought events on water 
demand (Section 4.1.3 and 4.2.2) 
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3.1.1 Description of biophysical models 

3.1.1.1 APSIM – methodology 

Pasture parameterisation 

The daily time-step Agricultural Production Systems Simulator (APSIM; Holzworth et al., 
2014) was used to simulate both pasture and crops. To simulate pasture production under 
past and future climates, we used the multi-species AgPasture module in APSIM (v. 7.10). 
APSIM links AgPasture to other modules which provide climate data, soil water and nutrient 
dynamics, plant and animal organic matter returns, and manipulation of grazing 
management. The main processes used to simulate plant growth in AgPasture are given in 
detail in Li et al. (2011); this paper also demonstrates the module’s ability to simulate pasture 
systems in New Zealand accurately across a wide range of soil types and climates. In 
addition, AgPasture has been validated using data from a long-running free-air CO2 
enrichment (FACE) experiment and has been shown to adequately simulate both intra- and 
inter-annual variations in response to elevated CO2 (Li et al. 2013). The effects of increasing 
atmospheric CO2 concentration are included in AgPasture by re-parameterising three key 
functions: plant photosynthesis and respiration, plant N demand and plant stomatal 
conductance. The parameter values, which depend on the atmospheric CO2 concentration, 
were taken from relevant literature (see Li et al. 2013). 

For all point locations, the pastures were modelled as a mixed pasture of Lolium perenne 
(perennial ryegrass) and Trifolium repens (white clover). Default parameter values for both 
species were used. For each location two soils were modelled; these were parameterised 
using APSIM-ready S-map files provided by Manaaki Whenua Landcare Research 
https://smap.landcareresearch.co.nz/) (section 5.2.1). Pasture management was the same for 
the three locations: the pasture was grazed when the standing pasture biomass reached 
2500 kg DM ha–1 for all months except in winter (May, June and July) when the target was set 
to 2000 kg DM ha-1; The simulated animals were removed when pasture biomass was grazed 
down to 1400 kg DM ha–1 in all months except in winter when it was set to 1700 kg DM ha–1. 
In all cases the stocking rate was the equivalent of pasture being consumed at the rate of 
350 kg DM ha–1 d–1. This protocol approximates that used by farmers to maximise both 
pasture productivity and quality. Simulated nutrient return through deposition of dung and 
urine was evenly spread across the pasture; note that as is usual for New Zealand hill country 
farms, the only de novo input of N in the model is from N fixation by clovers. Also, P was not 
explicitly modelled and was assumed to be non-limiting. 

Outputs from APSIM used in this report included daily pasture growth rates and amount of 
material harvested with the latter being summed on an annual basis. The leaching of NO3- 
was also simulated. 

Maize/catch crop wheat parameterisation 

For crops, APSIM v 7.10 was set up to simulate annual yields of a continuous silage-
maize/catch-crop wheat rotation in response to daily weather inputs in each location. Similar 



 

- 6 - 

to Teixeira et al. (2018), we consider the effect of farmers’ tactical adaptation to climate 
change through two genotype choices (short- and long-cycle hybrids) and movable sowing 
date in response to temperature. Thermal-time accumulation (degree-days, °C d) from 
emergence to end-of-juvenile period (“tt_emerg_to_endjuv” APSIM-maize parameter) were 
set at 130°Cd for the short-cycle hybrids and 250°Cd for long-cycle hybrids. For the 
adaptation of sowing dates, we assume that farmers prioritize the spring crop (silage maize), 
so that the sowing and harvest of the winter catch crop are subjected to optimum harvest or 
termination time of maize crops. Automated sowing rules that assume that farmers sow the 
maize crop as early as possible from 1 September (early-spring) to 1 January (mid-summer) 
once the 15-day running mean air temperature is >13°C. These heuristic rules mimic 
expected farmer’s adaptations to changing weather and climate by advancing sowing dates 
under warmer conditions. Delays in sowing due to excessive soil wetness were captured by 
constraining sowing on rainy days (> 10 mm rain) or when soils were saturated (i.e. soil 
moisture 5% higher than plant available water capacity in the top 150 mm). For catch crop 
wheat (C3 species), growth rates were assumed to increase with atmospheric CO2 
concentration, adjusted by temperature, by scaling radiation use efficiency (RUE) as per 
APSIM-wheat default parameterization (O’Leary et al. 2015). In contrast, no CO2 impact on 
RUE was considered for silage maize (C4 species) and RUE is empirically adjusted by air 
temperature as per APSIM-maize default parameterization. For both crops, transpiration 
efficiency (TE) was arbitrarily assumed to increase to a maximum of 37% at atmospheric CO2 
concentrations of 700 ppm, in relation to a 350-ppm baseline.  

3.1.1.2 Biome-BGC 

The Biome-BGC model v4.2 (Thornton et al. 2002, 2005) was used to model point location 
and regional pasture productivity for New Zealand managed grassland systems under future 
climate change scenarios. The Biome-BGC model is an ecosystem process model that 
simulates the biological and physical processes controlling fluxes of carbon, nitrogen (N) and 
water in vegetation and soil in terrestrial ecosystems. The model includes the CO2 
fertilization effect that enhances both the rate of photosynthesis and reduces water loss in 
plants under elevated atmospheric CO2 concentrations. Climate inputs include daily 
minimum and maximum air temperature, precipitation, vapour pressure deficit, wind, and 
solar radiation. Soil is modelled as a single layer with site-specific texture and rooting depth 
inputs. The model runs at a daily time step. 

We adapted Biome-BGC to represent two typical New Zealand managed grassland systems: 
“Sheep & Beef” (low intensity) and “Dairy” (high intensity). Although the Biome-BGC model 
does not explicitly simulate managed grasslands or animal grazing, we modified and re-
interpreted key ecological parameters from the model’s built-in C3 grasslands mode to 
represent the effects of management and the presence of grazing animals on pasture 
productivity (Keller et al. 2014). Dairy systems receive more N inputs (to simulate more 
fertiliser use), more grass is eaten (in the form of increased whole-plant mortality), and more 
animal products (i.e. carbon in milk or meat) are extracted and removed from the system. 
Irrigation and nitrate leaching are not simulated in either system. Model parameters were 
calibrated using observations of pasture growth and historic climate at six locations in New 
Zealand and validated for both dairy and sheep systems (Keller et al. 2014).  
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For this project, we used the Biome-BGC Sheep & Beef parameterization for all locations and 
scenarios. This is likely an underestimate of productivity in the areas that are dominated by 
intense dairy farming. However, our results are given in terms of change in productivity 
relative to present-day (RCP past), thus minimizing the effect of biases in the absolute levels 
of pasture growth. This also allows us to better isolate the climate effect on pasture growth 
without the effect of management interventions. The reference or ‘baseline’ pasture 
production for each GCM is an average over the nominal years 1986–2005. For all future 
scenarios, the model was first ‘spun up’ to an equilibrium steady state using RCP past 
climate, and then restarted and run as a transient simulation from 2005 to 2100 using each 
model- and RCP-specific projected climate.  

3.1.1.3 WATYIELD 

The Water-Balance model is designed for calculating the water deficit in soil for crop growth. 
It is developed based on the WATYIELD (a water balance bucket model developed by 
Manaaki Whenua – Landcare Research (MWLR), FAO-56 (Guidelines for computing crop 
water requirements) report as well as the SWAT model (developed by USDA) (see appendix 
1).  

 Soil Moisture Deficit (𝑆𝑀𝐷) – the amount of rain needed to bring the soil moisture 
content back to field capacity.  

The 𝑆𝑀𝐷 on day i is given by the difference between field capacity and 𝑆𝑊𝐶 at that day: 𝑆𝑀𝐷𝑖=𝑇𝐴𝑊−𝑆𝑊𝐶𝑖 (1) 

When 𝑆𝑊𝐶  is at the field capacity, the minimum value for the 𝑆𝑀𝐷  is 0. At the moment that 𝑆𝑊𝐶  reach 𝑊𝑃, the 𝑆𝑀𝐷  will have it maximum value  𝑇𝐴𝑊. Therefore, the limits on 𝑆𝑀𝐷  is: 0 ≤ 𝑆𝑀𝐷 ≤ 𝑇𝐴𝑊 (2) 

 Evapotranspiration Deficit (𝐸𝑇 𝐷) - is the total amount of water that is not available for a 
crop to have an unstressed transpiration process.   

The 𝐸𝑇𝑐𝐷 is the difference between the demand and the available water. It is calculated by 
comparing the difference between the crop evapotranspiration under standard condition 
(𝐸𝑇 ) and the actual crop evapotranspiration (𝐴𝐸𝑇 ). 𝐸𝑇 𝐷 = 𝐸𝑇   − 𝐴𝐸𝑇    (3) 

The limits on 𝐸𝑇 𝐷  is: 0 ≤ 𝐸𝑇 𝐷 ≤ 𝐸𝑇     (4) 

The parameterisation of WATYIELD includes the soil properties (TAW and RAW), interception 
fraction and the crop coefficients. We tested WATYIELD on four land covers: forest, kiwifruit, 
pasture and maize (Table 3). For kiwifruit, since this perennial crop has deciduous leaves 
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during winter, we only recorded the PED for the period of November to March, when the 
vine is actively producing. 

Table 3. Parameterisation of WATYIELD for selected crop covers 
 

Pasture Maize Kiwifruit Forest 

Crop coefficient (Kc) 1 0.8 1.05 (Nov–March) 0.7 

Interception Fraction (IF) 0 0.1 0.15 0.3 

Interception Storage Capability (ISC) 0.5 0.5 3 6 

 

3.1.1.4 Bioclimatic indices 

Heat stress index 

To estimate the potential heat stress on animals, we used the Temperature-Humidity Index 
(THI) that has long been established (Johnson et al, 1962). THI has been shown to be strongly 
correlated to reduced milk production and is therefore a useful indicator for farmers for 
tactical adaptation required in future. 

THI was calculated using the formula (NRC 1971): (1.8 ∗ 𝑀𝑎𝑥𝑇 + 32) − (0.55 − 0.0055 ∗ 𝑅𝑒𝑙𝐻𝑢𝑚) ∗ (1.8 ∗ 𝑀𝑎𝑥𝑇 − 26.8) (5) 

With MaxT the daily maximum temperature, RelHum the daily relative humidity. 

We followed a similar methodology to Nidumolu et al. (2014) in Australia. The THI was 
defined for: 

 Moderate heat stress: where THI is greater than 78 
 Severe heat stress: where THI is greater than 82 

We then computed raster layers for the current period (1986–2005), mid-century (2046–
2060) and end of century (2080–2100) that represent the average number of days per year 
mild, moderate or severe heat stress per year within the period. Period boundaries are 
inclusive. This was repeated for each of the four RCPs. Three GCMs were considered (CESM1-
CAM5, HadGEM2-ES, and NorESM1-M); the indicators are presented only for CESM1-CAM5. 
The other GCMS (BCC-CSM1.1, GFDL-CM3, and GISS-EL-R) were unable to be considered 
due to a lack of relative humidity data. 

Phenology change for wine grape  

Temperature is known to be a fundamental driver of plant physiology and phenological 
stages for wine grapes. While there are some process-based phenological models that 
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describe the influence of temperature on the different growth stages of a vine, they are only 
available on a point basis and require too many input variables. 

As an alternative, we used an empirical relationship between cumulative temperature and 
date of flowering developed by Parker et al (2011). The Grape Flowering Veraison model 
(GFV) was calibrated and validated in New Zealand. The GFV model is based on the growing 
degree day model, with the best fit to predict the flowering date (denoted F*) being the 
summation of degree-days from the 242nd day of the calendar year (typically the 30th of 
August), with a base temperature (Tb) of 0°C. We created a Python workflow that: 

1 calculates cumulative daily mean temperature (ignoring days where mean temperature 
is < Tb) from NIWA climate data (daily minimum and maximum temperature), for the 
period 1979–2120, for all RCPs and GCMs, with t₀=242 (corresponding to the 29/30th 
August) for any given (non-calendar) year. 

2 for a set of integer values of F* [1120, 1411]°C, calculates annual values of grapevine 
flowering (expressed as an integer representing the number of days since t₀). The output 
resolution is identical to the input climate data and covers all of mainland NZ (including 
Waiheke). 

3 for selected periods (early, mid- and late-century), determines the average flowering 
date across the period, as an integer for each cell, without interpolation. Areas not 
capable or not suitable for wine production are masked. We therefore removed any land 
use capability (LUC) class ≥ 6, as well as individual classes 3w, 4w, and 5w). The same 
mask is used for all periods. This is likely to be a liberal estimate of land that is suitable 
for viticulture, and certainly represents land that is not currently used for viticulture. 

3.1.2 Identification of climate attributes 

3.1.2.1 Initial expert consultation 

A wide range of key climate variables relevant to climate change impacts on production and 
the receiving environments, for different agricultural sectors, were initially identified through 
consultation with experts and stakeholders at a workshop held on 17 March 2017 (Beare et 
al. 2017).  For production, 18 climate variables were identified (e.g. seasonal temperature, 
number of hot days, seasonal rainfall) (Table 4). In contrast, four climate variables were 
identified as being potentially relevant to losses to receiving environments (Table 5). At a 
general level, seasonal variables were of greater value than annual variables when relating 
climate to production.  
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Table 4. Range of climate attributes potentially impacting on production, identified through 
consultation with experts and a stakeholder workshop (see Beare et al. 2017) 

Climate variable - general Climate variable – specific 

Temperature Seasonal mean 

No. hot days/season 

Number of hot nights/season 

Growing degree days/season or year 

Rainfall Seasonal mean 

Increased No. wet days 

Increased No. dry days 

Drought Length of dry season 

Frequency of successive droughts 

Extreme wind speed Seasonal % change 

Relative Humidity Seasonal % change 

Solar radiation Seasonal % change 

Plant Available Water (PAW) = Rain – ET 

Vapour pressure deficit 
 

Hail 
 

Reliability of water supply 
 

Temperature and moisture 
 

Vernalisation 
 

 

Table 5. Range of climate attributes potentially impacting on the environment, identified at a 
stakeholder workshop (see Beare et al. 2017) 

Climate variable – general Climate variable – specific 

High intensity rainfall Seasonal % change 

Cumulative drought + cumulative wet/cold Post drought abruption metric (PDM) 

Soil temperature and moisture 
 

Extreme wind 
 

 

Climate variables were further refined to a list of 16 relevant to production and eight relevant 
to N leaching (Table 6) through a series of project team meetings and data analyses. The 
degree of complexity for deriving climate attribute values (‘Tier’, see Table 7) was considered 
when selecting the final list to be included in the statistical analysis for examining the 
influence of climate attributes on production and N leaching. Some metrics were simply 
NIWA outputs (e.g. air temperature) while others were outputs from the process-based 
models described in section 5.1.1 (e.g. cumulative deep drainage, derived from APSIM). 
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Table 6. Final list of climate attributes for statistical analysis with modelled yield (above ground 
biomass production) and N leaching, derived from APSIM and Biome-BGC. Tier value refers to 
the degree of complexity for deriving values. Y refers to attributes and time scales used for 
subsequent data analysis 

Climate attribute Tier* Time scale Potential Effect  
(P = production,  
RE = receiving 
environment) 

Monthly Calendar 
Seasonal 

Crop 
seasonal 

Annual 

T annual Air temperature 1 
 

Y Y 
 

P 

GDD (base 7,10) 2 
 

Y Y Y P 

Growth Limiting Factor (GLF) – 
water 

3 
 

Y Y Y P 

Cumulative deep drainage (mm) 3 
   

Y P 

Number of frost days 1 
  

Y Y P 

Number of hot days above 25°C 1 Y 
   

P 

Total chill hours in winter 1 
 

Y 
  

P 

PCP (Annual precipitation) 1 Y 
   

P, RE 

PET (Potential 
evapotranspiration) 

1 Y 
   

P, RE 

AET (Actual evapotranspiration) 3 Y 
   

P, RE 

AET – PET 3 Y 
   

P, RE 

SPEI (Standardised Potential 
Evapotranspiration Index) 

2 Y 
   

P, RE 

ET-PET 3 
 

Y 
  

P, RE 

Relative Soil Moisture 3 
 

Y 
  

P, RE 

SoilDev 
     

P, RE 

Potential Evapotranspiration 
Deficit (PED) (mm) 

3 
 

Y Y Y P 

* see Table 7 for Tier definition 
 

Table 7. Tiers were defined based on the level of input required 

Tier Definition 

T1 A raw variable coming from the VCSN (e.g. precipitation or PET) 

T2 Bioclimatic indices purely derived from T1 data (e.g. SPEI, growing degree days) 

T3 Indices derived from a model that includes dynamic soil and climate characteristics (e.g. Apsim, Biome-
BGC or WATYIELD) 
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3.1.2.2 Statistical analysis 

Production 

To understand and attribute variance from complex models explained by simpler models, we 
examined the past plus RCP2.5 RCP4.5 and RCP8.5 in the six soils across the three regions. 
After regularising the annualised dataset to include periods covered by all models, the past 
included the years 1971–2003 and the future RCP covered 2006–2098. Stepwise selection of 
variables was performed in JMP v14.3, SAS Institute, USA. A full suite of available metrics was 
entered into backwards stepwise regression for selection at stringent p-value of 10–15 to 
minimise the number of and correlation between selected parameters for the final multiple 
regression. The multiple regression results were used to attribute explained variance. 

N leaching 

To analyse the variability in modelled N leaching, data was visually assessed to aid with 
determining which attributes could potentially be applied at a national scale. This was 
conducted by producing a series of colour-coded plots showing the effect of the eight 
climate attributes (Table 6) on modelled N leaching from pastures, sourced from the 
annualised dataset collated for the production analysis (see above).    

Results of the visual assessment were to be used for the next phase of the data analysis – 
development of a generalised mixed effects linear model – to determine the degree of 
variation that could be explained by the climate attributes, along with other non-climate 
factors such as year, RCP, GCM and soil. However, due to limited resourcing, this phase of 
the analysis could not be completed within the current project.  

3.2 Case study area 

3.2.1 Point location 

During the course of the project, it was decided to run the APSIM model, and record results 
from the other models (Biome-BGC and WATYIELD) in three contrasting regions of New 
Zealand. The regions of interest were Hawke’s Bay, Southland and Waikato. 

The three regions would likely have contrasting climate change projections, with the Hawke’s 
Bay region more likely to experience an increased number of drought events. The climate 
variables were derived from the previous Climate Change Impacts and Implications research 
programme (Tait et al. 2016). Climate outcomes based on RCPs are modelled via the 
Coupled Model Inter-comparison Project (CMIP5) using General Circulation Models (GCM). 
We used six GCMs (BCC-CSM1.1, CESM1-CAM5, GFDL-CM3, GISSE2-R, HadGEM2-ES, and 
NorESM1-M). The output variables were precipitation, maximum and minimum air 
temperature, relative humidity, vapour pressure, solar radiation, and wind speed. Each 
variable was calculated on a regular grid (0.05°, approximately 5 km) using the Virtual 
Climate Stations (VCS) from NIWA at a daily, monthly, and annual temporal resolution for the 
1971–2100 period (Tait & Turner 2005) (Fig. 2).  
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Figure 2 Study areas (red dots show the three locations chosen for the point-scale case study). 
 

We then chose a VCSN grid point that would include at least two contrasting soils in terms 
of drainage, with a flat topography that would suit both cropping and pastoral farming, so 
that the effect of soil could also be analysed (Table 8).  
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Table 8. Description of soil and VCSN grid used for the point analysis 

Region AGENTNO 
(VCSN) 

New Zealand Soil Classification* Total 
Available 

Water 
(TAW) 
(mm) 

Readily 
Available 

Water 
(RAW 
(mm) 

Comments 

NZSC Soil 
group 

Family_ 
Sibling 

Drainage 
class 

Hawke’s 
Bay 

31080 
lat -39.675 
long 
176.725 

Duric 
Perch-gley 

Pallic 

Ruataniwha
_13a.1 

Poorly 
drained 

87 40 
 

Weathered 
Fluvial 
Recent 

Waimakariri
_55b.2 

Well 
drained 

134 78 
 

Waikato 29259 
lat -37.825 
long 
175.375 

Typic Orthic 
Gley 

Pukehina_8
a1 

Poorly 
drained 

220 88 Te Kowhai 
soil 

impeded 
layer 

Typic Orthic 
Allophanic 

Ngakura_8a
1 

Well 
drained 

151 61 Horotiu 
soil: good 

soil 

Southland 10731 
lat -46.225 
long 
168.325 

Typic Frim 
Brown 

Waikiwi_30
a1 

Well 
drained 

189 61 Edendale 
soil: rolling 

deep 

Argillic-
fragic 

Perch-gley 
Pallic 

Pukemutu_
6a1 

Poorly 
drained 

96 37 
 

*Hewitt, 2010 

3.2.2 Regional case study 

For the regional-scale analysis, we chose to focus on the Hawke’s Bay region. This is in part 
to complement a concurrent project funded by the SLMACC (Sustainable Land Management, 
Adaptation and Climate Change) programme from MPI entitled ‘Applied adaptation 
pathways: supporting robust regional decision-making: an application in Hawke’s Bay’. This 
project is looking at the decision-making process and future pathways for adapting 
agriculture practices and major infrastructure needs in the face of climate change. It is a 
region of interest also because of the increased risk of drought events, thus giving our 
project an opportunity to test how production and receiving environments may respond to 
more frequent drought events. 

We examined how some key climatic attributes would vary spatially using WATYIELD and 
Biome-BGC. Biome-BGC was examined for the whole Hawke’s Bay region. The soil in each 
grid cell was parameterized with percentage clay, silt, and sand sourced from the 
Fundamental Soil Data Layers (FSL; Landcare Research 2010 
https://lris.scinfo.org.nz/layer/48079-fsl-new-zealand-soil-classification/). 

For the influence of crop cover on water balance, we used the WATYIELD model for the 
Karamu catchment within the Hawkes Bay, as this was one of the specific case studies of the 
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SLMACC project on “dynamic pathways for adaptation” (Fig. 3). The soil information required 
to run WATYIELD includes TAW and RAW. These values were derived from Smap, using the 
most dominant sibling within a polygon. 

 

Figure 3. Location of the Karamu catchment for the WATYIELD runs. 

4 Results 

4.1 Point-based analysis 

4.1.1 APSIM results pasture 

4.1.1.1 Long-term changes 

Figure 4 shows the APSIM modelled dry matter yields for the pastures at the 3 locations x 2 
soils and 3 RCPs (plus the present; RCPPa) at mid-century and end of century. In all cases, 
future yields were greater than the present, with only small differences between the mid- 
and end-century periods. In most cases, yield increased with increasing greenhouse gas 
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concentration trajectory (RCP). Among the regions, increases in yield were greatest and least 
variable in Southland and lowest and more variable in Hawke’s Bay. However, relative to the 
median, Southland tended to have more extreme low yields while Hawke’s Bay had more 
extreme high yields. 

 

Figure 4. Annual pasture production for the three locations (Waikato, Hawkes Bay and 
Southland) and the two soils at each location under current conditions (RCPPa) and the three 
RCPs at mid- and end of the century. Dots represent the six GCMs ("columns") and 20 years 
("rows").   



 

- 17 - 

 

Figure 5. Representative Current (Past), mid-century (Mid) and end of the century (End) 
monthly pasture growth curve changes in one of the locations/soils (Waikato/Te Kowhai soil) 
under RCP8.5. Dots represent the six GCMs ("columns") and 20 years ("rows") with no colour 
coding. Dashed lines in Mid and End panels is the current growth curve. 
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In addition to changes in projected annual yield, of equal and possibly more importance 
from the farm system point of view, are the changes in the distribution of pasture growth. To 
illustrate this impact, we have focused on results for RCP8.5, which represents climate 
projections under a business-as-usual scenario. As representative of these changes for 
Hawke’s Bay and Waikato modelled, Figure 5 shows the monthly pasture growth curve 
changes in one of the locations/soils (Waikato/Te Kowhai soil) under RCP8.5 at three time 
slices (“Past”, “Mid” and “End”). The top panel (“Past”) shows a typical present-day pasture 
growth curve with peak growth rates in the late spring and early summer. This curve is 
shown in the future panels (“Mid” and “End”) as the dashed line. As time progresses to the 
end of century there is a marked increase in the peak growth in late spring/early summer, in 
this case increasing from about 75 kg DM ha–1 d–1 to over 100 DM ha–1 d–1. Importantly, there 
is a decrease in growth in late summer (January and February). Of additional significance is 
the increase in year-to-year variability in growth rates especially in the summer. 

 

Figure 6. Changes in monthly pasture growth rates at end of century under RCP8.5 for all 
locations. Dots represent the average 20 years growth rate for each month for the six GCMs. 
 

The changes in monthly growth rates at the end of century for all locations are summarised 
in Figure 6. For Waikato (“Hor” and “TeK”) and Hawke’s Bay (“Rua” and “Wai”) the changes 
described above (increased spring and decreased summer growth rates) are clearly evident. 
For Southland (“Ede” and “Puk”), monthly growth rates are generally increased at all times of 
the year except in winter. If changes in farm management systems in response to these 
projected changes are not made in a timely manner, there is the possibility of profound 
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effects on farm financial viability. Some of these tactical, strategic and transformational 
adaptations are outlined in the discussion. 

 

Figure 7. Annual nitrate leaching for the three locations (Waikato, Hawkes Bay and Southland) 
and the two soils at each location under current conditions (RCPPa) and the three RCPs at mid- 
and end of the century. Dots represent the six GCMs ("columns") and 20 years ("rows"). 
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Figure 7 shows the changes in nitrate leaching for all locations in a similar fashion to Figure 
5. The Rua soil in Hawke’s Bay is notable in that leaching levels are very low due to it having 
an impenetrable pan. In contrast, the Hawke’s Bay soil Wai tended to have the highest and 
most extreme year-to-year variability. In all cases, nitrate leaching was greater both in the 
future and with increasing greenhouse gas concentration trajectory (RCP). The most 
noticeable changes with increasing RCP were in Southland whereby the end of the century 
leaching increased from about 5 to 25 kg N-NO3 ha–1 y–1. 

4.1.1.2 Drought impact 

We selected GCMs that represented some increasing drought issues in the future in the 
Hawke’s Bay region. These are shown as increasing negative difference from the usual 
distribution of precipitation and evapotranspiration over time, but to variable degrees (Fig. 
8). As for long-term changes (section 5.1.1.1), we have focused on results for RCP 8.5, which 
represents climate projections under a business-as-usual scenario. For RCP8.5, there is a 
general negative trend for SPEI that infers less precipitation than normal. 

 

Figure 8. Example of SPEI for different GCMs, Hawke’s Bay, cumulated over 3 months before 
February. 
 

For pastures, we also tried to use the concept of SPEI to see if it could act as a simple 
predictor of modelled annual pasture dry matter production. To do this, for RCP8.5 for all 
GCMs and locations from 2006 to 2100, we took the seasonal SPEI3 values for winter, spring, 
summer, and autumn (corresponding to the SPEI3 values for August, November, February, 
and May respectively). These values were regressed against modelled annual dry matter 
production; model selection and multi-model inference were conducted using the R package 
glmulti. We used multi-model inference as we did not want to make inferences about the 
importance of the four SPEI3 predictors in terms of a single ‘best’ model but rather across all 
possible models (after considering their relative explanatory weights). 

Figure 9 shows one of the better models fits: for the Wai soil in the Hawke’s Bay using the 
CES GCM, using the four seasonal SPEI3 values, simulated dry matter production is predicted 
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quite well with an R2 of about 61%. Conversely, Figure 11 shows a situation (the Puk soil in 
Southland with the GIS GCM) where the seasonal SPEI3 values could not predict simulated 
annual dry matter production. 

 

Figure 9. Linear regression between annual dry matter production simulated by APSIM 
(DM_grown) and that calculated from the multi-model regression (Pred_grown) based on the 
SPEI3 values for four seasons (winter, spring, summer, and autumn, i.e. SPEI3-August, SPEI3-
November, SPEI3-February, SPEI3-May respectively), for the Waimakariri soil in Hawke’s Bay, 
under RCP8.5, GCM CESM1-EM. 
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Figure 10. Linear regression between annual dry matter production simulated by APSIM 
(DM_grown) and that calculated from the multi-model regression (Pred_grown) based on the 
SPEI3 values for four seasons (winter, spring, summer, and autumn, i.e. SPEI3-August, SPEI3-
November, SPEI3-February, SPEI3-May respectively), for the Puk soil in Southland, under 
RCP8.5, GCM CESM1-EM. 
 

The ability of the seasonal SPEI3 values to predict simulated annual pasture dry matter 
productions for the different locations and GCMs are summarised in Table 9. There are clear 
differences between the locations/soils as well as the GCMs. Overall prediction was poor in 
Southland and intermediate in the Waikato. For Hawke’s Bay, the technique worked well for 
the Wai soil (R2s from 44% to 61%) but not so well for the Rua soil. These differences are 
likely to be largely to the importance of rainfall to plant growth (e.g. Southland vs Hawke’s 
Bay) though other constraints, such as the impeding pan in the Rua soil affecting the results. 
There were also marked differences between the GCMs with for example, GIS being ranked 
lowest in all locations/soils.  
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Table 9. R2 values of the best multi-model regression of seasonal SPEI3 values and simulated 
pasture dry matter production for the six location/soils and six GCMs. Colour coding indicate 
good (green) to poor (red) fits 

 
GCM 

BCC CES GFD GIS HAD NOR 

Soil Hor 0.42 0.32 0.48 0.30 0.54 0.34 

TeK 0.38 0.30 0.44 0.27 0.49 0.33 

Rua 0.35 0.16 0.25 0.09 0.21 0.26 

Wai 0.48 0.61 0.50 0.44 0.52 0.55 

Ede 0.07 0.03 0.11 0.02 0.05 0.04 

Puk 0.09 0.07 0.14 0.00 0.05 0.03 

 

4.1.2 APSIM results maize 

The assumed adaptation of sowing dates (i.e. earlier spring sowing during warmer years) and 
maize genotypes (short- or long-cycle), together with local climate differences, implied that 
the two crops experienced largely different magnitudes of warming during growth due to 
climate change. For an end-of-century period, this ranged from 0.2°C for short-cycle silage 
maize crops in Hawke’s Bay (RCP 2.6) to up to 2.1°C (RCP 8.5) for catch-crop wheat following 
a long-cycle maize in Waikato (Fig. 11). This highlights the importance of interactions 
between climate change and management decisions (i.e. sowing dates, genotype selection, 
and crop rotation set up), which together define the degree of exposure of individual crops 
to climate change. 
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Figure 11. Temperature change experienced during crop growth by different crops in the 
rotation (silage maize followed by catch-crop wheat) for two maize genotypes (short or long 
cycle), 3 RCPs during the end-of-century period. 
 

The importance of considering adaptation is illustrated for long-cycle maize crops in rotation 
(Figure 12). For end-of-century RCP 8.5, maize crops were sown around 3 weeks earlier than 
for the baseline climate. This enabled also early sowing of the next crop (catch crop wheat) 
which enables longer growth periods and consequently higher yields during winter. 

 

Figure 12. Estimated change in sowing dates for a rotation with long-cycle irrigated silage 
maize crops followed by catch crop wheat crops for the baseline and end-of-century periods. 
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Highest baseline irrigated silage yield estimates were approximately 28 t dry matter/ha, with 
a median of ~20 t/ha in both Hawkes’s Bay and Waikato. Irrigation input in maize crop 
ranged from 0 to 440 mm/year (median of 75 mm/year) depending on the location and soil. 
Climate change, after accounting for adaptation of sowing dates, had minimal effect on 
irrigated maize yields, with the exception of slightly increased variability in Hawke’s Bay 
(RCPs 2.6 and 4.5) (Fig. 13). This highlights the importance of accounting for adaptation in 
managed systems such as arable cropping. Without adaptation, expected impacts of climate 
change in maize were shown to be negative in the warmer regions of New Zealand (Teixeira 
et al. 2018). In contrast, for the winter period, catch crop wheat yields increased by ~3 t/ha 
with the higher emission scenarios. This was a combination of several factors, including the 
reduction of low temperature limitations during winter, the positive response of C3 crops 
such as wheat to increasing atmospheric CO2 and the fact that previous crops (maize) were 
harvested earlier, enabling the catch crop wheat to be sown earlier and grow for longer 
periods. Such dynamics highlight the importance of representing crop rotations, not only 
individual crops, as there is a carryover of effects across sequential crops with possible 
synergies and trade-offs occurring.  

 

Figure 13. Yield estimates for a crop rotation with irrigated silage maize crops followed by 
catch crop wheat for different RCPs, six GCMs, for two maize genotypes. Dotted grey lines 
show baseline median yield for wheat (7 t/ha) and maize (20 t/ha). 
 

For rain-fed systems, changes in water stress risk for the different climate scenarios (i.e. RCPs) 
represented as a water deficit index (Fig. 14) differed among locations, crops and soils. The 
more drought prone rain-fed systems occurred in Hawke’s Bay for maize crops where crops 
had ~30% of their water demand fulfilled (i.e. water deficit of 30%). Catch crops, which grow 
in winter when evapo-transpiration is lower, were less subjected to water stress. As a 
preliminary analysis, it seems that the effects of RCPs and soils were more evident on the 
frequency of extreme drought events than median values. Patterns differed with GCMs 
suggesting the importance of considering climate uncertainty particularly when dealing with 
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drought assessments under climate change. Such responses have CO2 fertilization effects 
embedded assuming crops will be more efficient under higher CO2 (i.e. higher RCP values) 
and therefore are a conservative measure of drought stress. 

 

Figure 14. Fractional water deficit as a percentage of total crop water demand for different 
GCMs, RCPs, soils, crops and locations for rain-fed systems. 
 

The potential of catch crops to uptake residual soil N was largely driven by biomass 
accumulation (Fig. 15). High emission climate scenarios and late time periods therefore 
increased N uptake by catch crops from 100 kg N/ha to 150 kg N/ha in response to yield. 
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Figure 15. Nitrogen uptake by winter catch crops in response to crop yield during the 
autumn/winter period. Data pooled across all GCMs and soil types.  
 

Such results indicate that the intensity of N luxury uptake by catch crops, expressed as higher 
N concentrations, might change under climate change. This implies that catch crops remain 
an effective adaptation to reduce the risk of N leaching losses under climate change. 
Nevertheless, catch crops might be slightly closer to their maximum N uptake potential due 
to a greater N availability in the system with a less than proportional increase in growth rates 
during autumn/winter. These hypotheses require further testing based on measured data, 
but our preliminary model results enable identifying these possible patterns of response.  

As for impacts on pastoral systems (section 6.1.1), we have focused on results for RCP8.5. 
Estimates of N leaching at 90 cm depth were largely variable from year to year, as illustrated 
for RCP8.5 in Figure 16. Soil type was a key determinant of absolute leaching estimates. The 
impact of climate change on median values was of smaller magnitude than inter-annual 
variability and the impact of soil type. The “Rua” soil showed less N leaching losses, similarly 
to the pasture results, likely due to its higher water holding capacity at upper soils layers. The 
Waimakariri soil in the Hawke’s Bay is the only soil that presents potential increased risks 
with more extreme N leaching events for some GCMs. These results highlight the importance 
of assessing changes to the frequency and magnitude of extreme leaching events across 
time periods, GCMs and soil types to sample uncertainty in estimates.    



 

- 28 - 

 

Figure 16. Nitrogen leaching losses at 90 cm depth estimated for RCP 8.5. An irrigated maize 
silage crop followed by catch-crop wheat over 25 years. 
 

Future analysis will improve the representation of arable cropping systems through a 
different selection of soil types because the scope of this study required similar soils to be 
run for both crops and pastures, which might not reflect farmer’s choice in crop allocation. 

4.1.3 WATYIELD results 

We plotted the difference in PED from a nominal pasture cover (Figure 17). For the three 
locations in Hawke’s Bay, Southland and Waikato, the water demand (PED) is higher for 
maize compared with pasture. Forest is less demanding in water than pasture. Kiwifruit is less 
demanding in the Hawke’s Bay than pasture but has similar PED in the other regions. 
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Figure 17. Variation in Potential Evapotranspiration Deficit (PED) from a pasture cover in the 
three locations in Hawke’s Bay, Southland and Waikato. 
 

Looking into the future climate change projections, we estimated that water demand would 
increase in all scenarios and for the three regions. Results are shown as changes in PED, with 
more substantial changes in the Waikato and Southland (Fig. 19 and Fig. 20), compared with 
Hawke’s Bay (Fig. 18), which already has high water demand for plants. Changes are more 
visible towards the end of the century, with 20–30% change in Hawke’s Bay, and up to 40% 
change in Southland for kiwifruit, pasture, and maize. The variability across GCM is shown as 
larger than the other covers, mainly due to the overall lower PED. 
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Figure 18. Change in PED for the four RCP (2.6, 4.5, 6.0 and 8.5) in the Hawke’s Bay region for 
two soils (Rua and Wai). 
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Figure 19. Change in PED for the four RCP (2.6, 4.5, 6.0 and 8.5) in the Waikato region for two 
soils (Hor and TeK). 
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Figure 20. Change in PED for the four RCP (2.6, 4.5, 6.0 and 8.5) in the Southland region for two 
soils (Ede and Puk). 
 

4.1.4 Statistical analysis 

4.1.4.1 Pasture 

Production 

This project evaluates models ranging from simple (tier 1) to complex (tier 3) as candidate 
data sources for climate attributes contributing to the evaluation of future land use 
suitability. For understanding how long-term climate, drought risk, and shifting seasonal 
patterns can include information about current climate and future climate change, it is useful 
to have some understanding of the correlations between different models and metrics, and 
where possible a sense of how variance in annual production from highly complex models 
can be attributed to simpler metrics. Therefore, we used multiple regression, with which 
many readers will be familiar for these purposes, treating the output from complex models 
as independent data. 

We compared the proportion of variance in production from the most complex models 
(APSIM and Biome-BGC) that could be explained by simpler models and metrics 
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representing climate. We evaluated these terms in relation to three other sources of variance. 
First, we considered variance introduced by the properties of the six soils. Second, we 
considered the different GCMs. Third, because of an interest in drought and changing 
seasonal water balances, we specifically asked how much of the variance in production could 
be explained by indices summarizing water balance in the models.  For this analysis we 
examined the past plus RCP2.5 RCP4.5 and RCP8.5 in six soils in three regions. 

Before anything else, it is useful to recognise the correlation between models when 
examining results. Biome-BGC’s pasture production explained 56% of the variance in annual 
pasture production from the more complex APSIM model. A direct comparison of pasture 
production is not possible from WATYIELD, but the PED can be compared to the comparable 
calculation in Biome-BGC: WATYIELD PED explained 91% of the variation in Biome-BGC ET-
PET. 

A series of highly significant indices selected by stepwise multiple regression explained 79% 
of the variance in APSIM results. Within this explained variance, 26% could be attributed to 
the six soils, 4% to the six GCMs, 20% to Tier 1 climate indices, and 29% to water indices 
derived from Biome-BGC. Of the model derived water indices, Biome-BGC’s annual ET-PET 
was most important (16%). For climate indices, SPEI2 for January was most important (9%). 

Stepwise multiple regression identified similar indices that explained 89% of the variance in 
Biome-BGC annual pasture production. Variance in the 6 soils accounted for 20% of the 
variance in Biome-BGC production, while variance in the 6 GCMs only accounted for 2%. 
Water indices within the Biome-BGC model explained 39% of variance in production, with 
29% explained by annual ET-PET. Tier 1 climate indices explained 28%, led by SPEI2 for 
February at 15%. 

It is important to note, however, that the water indices were derived from the Biome-BGC 
model output. These water indices cannot therefore be considered as independent of the 
Biome-BGC-modelled pasture production. Further regression analysis, with Biome-BGC-
derived indices excluded, will be required to explain the variance in production explained by 
soil, GCM, climate indices and non Biome-BGC-derived water indices. None of the climate 
variables included in this analysis were derived from the APSIM model. 

A limitation of our regression analysis that needs to be acknowledged is the overlapping 
nature of some of the SPEI2 and SPEI3 attributes. For example, in Table 10, both 
SPEI2January and SPEI2February have been identified as having some influence on the 
variation in modelled pasture production. However, both attributes have the month of 
January in common, as each attribute covers a 2-month period: the month noted in the 
attribute name and the previous month.  

  



 

- 34 - 

Table 10. Variables explaining APSIM- and Biome-BGC-modelled pasture production 

% Variance Explained APSIM Biome-BGC 

Total 79.0 % 89.1 % 

GCM 4.4 % 1.9 % 

Soil 26.1 % 19.8 % 

Modelled water 28.4 % 39.4 % 

Climate Index 20.0 % 28.3 % 

Top predictors Biome-BGC ET Annual 
Biome-BGC ET Summer 

SPEI2 January 

Biome-BGC ET Annual 
Biome-BGC ET Summer 

SPEI2 February 

 

As a preliminary assessment for identifying potential climate attributes for inclusion in the 
LUS framework, we have focused solely on these attributes and excluded the influence of 
projection and soil/region related factors. We have excluded ‘Tier 3’ modelled ‘water’ 
variables and assumed, for the purposes of this preliminary assessment, that the remaining 
variables provide an indication of their relative importance with respect to pasture 
production. It is also assumed that following removal of the modelled ‘water’ variable 
the degree of variation in pasture production explained by the remaining variables is 
maintained. In reality, however, the multiple regression analysis should be repeated with the 
revised set of variables. Resourcing did not permit this revision; thus, our exploration of 
potential climate attributes must be considered as provisional. Climate attributes were 
ranked and compared between the two models (Table 11).  

Results from this preliminary assessment showed that, among the top 8 climate attributes 
calculated independently from APSIM and Biome-BGC, two were in common: SPEI2.Jan and 
Nbhotdays25. The SPEI2.Jan variable is the abbreviated name for the Standardised Potential 
Evapotranspiration Index, based on rainfall and PET for the 2 months of December and 
January. This variable has been classified as a Tier 2 variable, as it can be estimated using 
climate data available from NIWA. The top contender from the Biome-BGC modelling is also 
SPEI2, but for February. As noted earlier, data overlap between SPEI2.Jan and SPEI2.Feb. The 
Nbhotdays25 attribute is classified as Tier 1 as it is directly available from NIWA as a 
projected climate variable. This attribute relates to the number of days per year where the 
mean daily air temperature is greater than 25°C. 
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Table 11. Ranking of top 8 key climate attributes influencing pasture production where 
production was modelled using APSIM and Biome-BGC. Attributes in bold selected as 
preliminary variables for consideration in Land Use Suitability framework 

APSIM Biome-BGC 

Climate 
variable 

Degree of variation explained 
(%) 

Climate 
variable 

Degree of variation explained 
(%) 

SPEI2.Jan 34% SPEI2.Feb 48% 

Temp annual 14% GDD7annual 16% 

SPEI3.Nov 11% SPEI2.Dec 10% 

SPEI1.Feb 10% SPEI3.Jun 9% 

Nbhotdays25 8% PCP 4% 

GDD10annual 5% SPEI2.Jan 4% 

PET 5% Temp autumn 4% 

SPEI2.Apr 4% Nbhotdays25 3% 

N leaching 

Visual presentation of the eight selected climate attributes (Table 11) and modelled N 
leaching data was initially carried out on all 6 soils (Appendix 10.2). However, the dataset did 
not contain outputs for the Te Kowhai soil, while N leaching losses were zero or close to zero 
kg N/ha for the Ruataniwha soil. Both soils are poorly drained, and therefore can be 
considered as low risk’ leaching soils. Consequently, for the subsequent data visualisation, 
both soils were excluded. 

Our preliminary assessment of the data suggested some of the climate attributes showed 
little relationship with N leaching while others show N leaching varies with varying 
magnitude of the attribute (Appendix 10.2). For example, the influence of ‘ET-PETSu’ 
(summer seasonal ET-PET) on modelled N leaching varied according to soil/region, with 
similar N leaching losses from the Edendale and Pukemutu soils in Southland under different 
ET-PET conditions (Fig. 21). Similarly, the modelled N leaching losses from the Waimakariri 
soil in the Hawkes Bay showed large yearly variation. However, the mean N leaching losses 
could be considered to be not largely different to the average loss from the Southland soils, 
while the ET-PET Su values are markedly different. The soil/regional variation observed for 
ET-PETSu diminishes the applicability of this attribute as having national relevance relative to 
the visual results of SPEI3Sep. 

In contrast, the influence of attribute ‘SPEI3Sep’ (Standardised Potential Evapotranspiration 
Index averaged over 3 months from July to September) does not appear to be soil/regionally 
dependent (Fig. 22). The range of SPEI3Sep values are similar for the 4 soil/regional 
combinations, and for the different RCPs. Furthermore, we can see consistency in the range 
of SPEI3Sep values within each soil/region/RCP combination. The plot graph shown for 
SPEI3Sep is like that of other SPEI attributes (Appendix 10.2). These features lend SPEI as a 
climate attribute that could potentially be applied nationally, making it a provisional attribute 
to be considered for inclusion in the LUS framework.  



 

- 36 - 

 

Figure 21. Effect of climate attribute ‘ET-PETSu’ (summer seasonal ET-PET) on modelled N 
leaching (MNO3, kg N/ha) from 2006 to 2098, for 3 RCPs (2.6, 4.5 and 8.5) and 4 soil/regions 
(Edendale in Southland, Horotui in Waikato, Pukemutu in Southland, and Waimakariri in 
Hawke’s Bay). 

 

Figure 22. Effect of climate attribute ‘SPEI3Sep’ (Standardised Potential Evapotranspiration 
Index, 3 month average for July-September) on modelled N leaching (MNO3, kg N/ha) from 
2006 to 2098, for 3 RCPs (2.6, 4.5 and 8.5) and 4 soil/regions (Edendale in Southland, Horotui in 
Waikato, Pukemutu in Southland, and Waimakariri in Hawke’s Bay).  
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4.1.4.2 Maize 

Annual values for each climate attribute and time scale were extracted from the relevant 
source e.g. NIWA data, output from APSIM. Correlation of each attribute with production, 
based on a Pearson’s correlation analysis, provided a visual means for restricting the list of 
attributes further. An example with preliminary analysis is shown in Figure 23, where 23 
climate variables have been correlated with above ground biomass (RE.TB), for simulations in 
Hawke’s Bay and Waikato. 

 

Figure 23. Correlation matrix (Pearson’s coefficient) for a selection of climate attributes and 
Total biomass (RE.TB) for all simulations in the Hawke’s Bay and Waikato regions. 
 

As expected for a C4 crop, total biomass was found to have positive correlation with 
temperature in summer and thermal accumulation. The changes in temperature were in 
general still within the optimal ranges for the crop. In contrast, extremely high temperature 
starts reducing biomass as shown by the negative correlation with number of hot days above 
25 degrees. For water stress conditions, the analysis highlighted negative correlations 
between biomass and soil water deficit index (SWDI; the accumulated deficit in relation to 
crop water demand in APSIM) and also potential evapo-transpiration (PED and PET) that are 
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related to high water demands. From the water supply side, crops with more access to water 
(e.g. deeper roots and soil profiles) showed high actual evapotranspiration (AET) which is 
positively correlated with biomass production. These responses show that model responses 
were sensible, and internally consistent, which is encouraging for further exploration of 
responses in similar agricultural systems. 

As with the pastoral analysis, we performed an exploratory linear regression analysis on a 
selection of climate attributes related to summer (as we focused on maize, in a rainfed 
system, for a short genotype) to understand the relative importance of climate vs soil 
attributes. The results show a high importance of soil (31%), low importance of RCP or GCM 
(possibly due to the adaptation measures), with the rest of the variables related to climate. 
The rainfall during the maize growth season was the most influential climate attribute (15%) 
explaining variation in above ground biomass across these two regions.   

Although more analysis is needed to confirm these preliminary results, an example of a 
multiple linear regression is shown for the Ruataniwha soil in Hawke's Bay (Table 12). In this 
case, the Hawke’s Bay is a region more sensitive to drought. The water-related attributes 
were shown as having more influence on the total biomass than temperature-related 
attributes. 

Table 12. Most influential predictors of total above-ground biomass for the Ruataniwha soil, 
across all RCP and GCM 

 
Relative importance of predictors 

SPEI3.Jan 22% 

sumRain 19% 

SPEI2.Jan 19% 

SPEI3.Feb 15% 

SPEI1.Jan 7% 

SPEI2.Feb 6% 

GCM 4% 

Nbhotdays25 3% 

SPEI1.Feb 2% 

Year 1% 

RCP 1% 
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4.2 Regional scale analysis 

4.2.1 Pasture production in the Hawkes Bay region 

Overall, the Biome-BGC model predicts that annual pasture yield will increase in the Hawke’s 
Bay region regardless of scenario (Fig. 24). This is primarily due to continued favourable 
climate conditions and the modelled CO2 fertilization effect. However, there is a seasonal 
shift, with warmer temperatures allowing more production in winter and spring throughout 
the region, and less precipitation in late spring and summer leading to a corresponding 
reduction in yield in summer. The hill country in the western part of Hawke’s Bay is 
particularly affected, as illustrated for predictions based on RCP 8.5 (Fig. 25).   

 

Figure 24. Biome-BGC model ensemble mean annual pasture yield for the Hawkes Bay region, 
as percentage change from RCP past. Two time slices, mid-century (top: 2046–2065) and end-
of-century (bottom: 2081–2100) are shown for RCP 2.6 (left), RCP 4.5 (middle), and RCP 8.5 
(right). 
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Figure 25. Biome-BGC model ensemble mean seasonal pasture growth rate for the Hawke’s Bay 
region under RCP 8.5, as percentage change from RCP past, for two time slices, mid-century 
(top: 2046–2065) and end-of-century (bottom: 2081–2100). Note that winter is shown on a 
different scale. 
 

Despite the overall increase in yield, there is a trend towards increasing water limitation (Fig. 
26), as indicated by ET-PET, especially in spring and summer (Fig. 27). This could have 
implications for irrigation and water demand in a region that is already prone to drought.  

 

Figure 26. Mean annual cumulative ET - PET (an estimate of water demand; ET calculated from 
the Biome-BGC model ensemble average) for RCP past (1986–2005) and RCP 8.5 (2046–2065 
and 2081–2100). Grey indicates that the plant water demand is met or exceeded.  
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Figure 27 (continued following page). Mean seasonal cumulative ET - PET (an estimate of water 
demand; ET calculated from the Biome-BGC model ensemble average) for (1986–2005) and RCP 
8.5 (2046–2065 and 2081–2100). Grey indicates that the plant water demand is met or 
exceeded. 
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Figure 27(continued). Mean seasonal cumulative ET - PET (an estimate of water demand; ET 
calculated from the Biome-BGC model ensemble average) for (1986–2005) and RCP 8.5 (2046–
2065 and 2081–2100). Grey indicates that the plant water demand is met or exceeded. 
 

The statistical analysis (section 4.1.4.1) revealed that modelled pasture production is 
particularly sensitive to annual ET-PET and changes in summer PET and precipitation 
(through the SPEI2.Feb index). Figure 28 shows that the pattern of change in summer pasture 
production relative to RCP past closely matches changes in precipitation in many parts of the 
region. While the precipitation in the region as a whole remains relatively low (not shown), 
even a small increase or decrease has an impact on production. This is especially true when 
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soil moisture is below a certain threshold and ET-PET is negative. This demonstrates the 
sensitivity of pasture production to precipitation and evapotranspiration and the mitigation 
potential of irrigation in a water-limited region. However, this might mean additional 
pressure on a water supply that is already stretched. 

 

Figure 28. Mean summer (December–January–February) change in pasture growth (top) and 
total precipitation amount (bottom) in RCP 8.5 at the end of the century (2081–2100), for each 
of the 6 GCMs modelled (labels at bottom).  
 

We examined regional drought by using relative soil moisture as an indicator of drier-than-
average conditions. Figure 29 shows the grid cells with drier conditions in each month of 
RCP8.5 for each GCM on a normalized scale from 0 to 4, 4 being much drier than historical 
averages (as defined by RCP past), and 0 indicating average or wetter conditions. Some 
models, particularly HadGEM-2, GFDL and CESM-1, show notably drier soil conditions in the 
latter half of the century. The south of the region is particularly affected. However, monthly 
pasture production is only weakly correlated to this measure of drought, indicating that 
there are likely other mitigating factors (such as CO2 fertilization) that dominate the plant 
response in the model.   
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Figure 29. Heat map of drought index (based on relative soil moisture) for each month (x-axis) 
and grid cell (y-axis) under RCP 8.5, for each of the 6 GCMs modelled. Grid cells are ordered by 
longitude. Values have been normalised on a scale of 0 to 4; higher index (darker) = drier 
conditions; 0 indicates soil is at historical average or wetter than average conditions.  
 

4.2.2 WATYIELD results in the Karamu catchment 

WATYIELD results show that the Potential Evapotranspiration Deficit (PED) will increase under 
both RCP2.6 and RCP8.5 scenario. All four vegetation covers have similar temporal patterns 
of changes of PED (Fig. 30 and Fig. 31). The level of change is much higher under RCP8.5 
than RCP2.6 due to the higher PET and decrease in precipitation.  

The spatial pattern tends to be driven by vegetation cover as well as climate and soil. For a 
similar climate and soil, the changes in PED vary for the four vegetation covers. For instance, 
in the centre of the catchment, forest cover has a relatively higher change rates compared to 
maize, although this is due to an overall lower PED for forest cover.  

The spatial pattern is also driven by soil properties. For example, during a year, the potential 
evapotranspiration Deficit for a crop is likely to start later in the year for a deep soil with high 
TAW and high RAW (Fig. 32) (WATYIELD assume soil is at full water holding capacity at the 
first day of simulation). This is because as more water is retained in the soil, the plant can use 
it through evapotranspiration for a longer period without rain then shallow soil. However, if 
the soil water content is too low, it takes longer to refill and meet the evapotranspiration 
requirement. Therefore, we can see higher PED changes in the south-west catchment where 
the TAW and RAW are 500 mm and 200 mm respectively.  
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Figure 30. PED change in Karamu (RCP 2.6).  
 

 

Figure 31. PED change in Karamu (RCP 8.5).  
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Figure 32. TAW and RAW distribution in Karamu.  
 

4.3 National scale results 

4.3.1 Animal heat stress index maps 

We mapped the change in numbers of days with mild, moderate and severe heat stress 
(Figure 33). The baseline shows that regions currently at moderate risk are in the Canterbury, 
Wairarapa, Hawke’s Bay and some parts of the Waikato. Severe heat stress risk is currently 
spread across the eastern side of the country, with less than 3 days of extreme THI. 

Results show that, for all the climate change scenarios, there is an increase in risk of 
moderate heat stress for dairy cows (Table 13). The risk is more prevalent for RCP8.5 than 
RCP2.6, with up to two more weeks of moderate heat stress, spread across the country.  

For severe heat stress, the risk is also increasing for all RCPs, with more pronounced risk 
towards the end of the century. The change in average days per year for RCP8.5 is more 
pronounced in regions that are already at risk, in particular: along the coast of the Hawke’s 
Bay and Gisborne area, mid-Canterbury, central Otago and central North Island. 

Note that the THI index does not account for cumulative effects of heat stress events; 
therefore, it is a conservative estimate of likely heat stress. 
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Table 13. National average annual number of days with mild, moderate or severe THI under 
RCP 2.6 to 8.5 

  
National average annual days of heat stress   

Mild Moderate Severe  
Present 8.92 (σ 7.86) 2.46 (σ 2.85) 0.48 (σ 0.78) 

RCP2.6 2046-2060 15.75 (σ 12.45) 5.00 (σ 4.95) 0.96 (σ 1.37) 

2080-2100 16.25 (σ 12.93) 5.22 (σ 5.22) 0.90 (σ 1.38) 

RCP4.5 2046-2060 17.49 (σ 13.82) 5.59 (σ 5.55) 0.96 (σ 1.48) 

2080-2100 22.84 (σ 17.00) 7.91 (σ 7.41) 1.45 (σ 2.06) 

RCP6.0 2046-2060 18.13 (σ 13.79) 6.02 (σ 5.78) 1.19 (σ 1.71) 

2080-2100 27.89 (σ 19.38) 10.36 (σ 9.12) 1.94 (σ 2.71) 

RCP8.5 2046-2060 21.69 (σ 16.03) 7.18 (σ 6.68) 1.33 (σ 1.86) 

2080-2100 45.18 (σ 27.66) 20.67 (σ 15.48) 4.89 (σ 5.47) 

Numbers in brackets are the standard deviations 
Lower heat stress categories include higher categories (“mild or worse”, etc.) 
GCM: CESM1-CAM5 
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Figure 33. National maps of moderate and severe heat stress (temperature humidity index, 
THI), and small multiples showing how the average annual number of days of heat stress is 
predicted to change in the 21st century under different climate change scenarios. 
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4.3.2 Phenology changes in wine grapes 

Maps of flowering dates were produced for the whole country using the Grape Flowering 
Veraison model (Fig. 34). The future climate change projections and the increase in average 
temperature is estimated to shift the flowering date. Results for the sauvignon blanc variety 
show a shift by up to two weeks prior to the baseline flowering date. It is worth noting that 
parts of New Zealand that were too cool (flowering date beyond mid-December) would 
reach earlier flowering dates that may become suitable for the wine industry by the end of 
the century. As such, parts of the South Island that are currently marginally suitable for 
growing wine grapes may become new areas where the industry could be implemented. 
However, other climatic factors would need to be taken into account, including the 
precipitation patterns. 

 

Figure 34. Changes in flowering dates in New Zealand for sauvignon blanc using the GFV model 
for GCM NorESM1-M and RCP8.5.  
 

Looking more closely in the Hawke’s Bay region, the current flowering date for sauvignon 
blanc is on average around the 8th December, which seems to match broadly with current 
observations (Agnew et al. 2017) (Fig. 35). The increase in temperature for the worst scenario 
(RCP8.5) shows that the flowering date could shift by 7 days (mid-century) up to 11 days by 
the end of the century. Across all GCMs, for RCP8.5, the mean change in flowering date for 
the mid-century period, for Hawke’s Bay, is 7 days earlier compared with the present period 
(standard deviation of 1 day). For the end-of-century period, this value is 14 days earlier 
(standard deviation of 1.7).  
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Figure 35. Changes in flowering dates in Hawkes Bay for sauvignon blanc using the GFV model 
for NorESM1-M and RCP8.5.  
 

The workflow we developed enables us to test the potential phenological changes across 
grape varieties (Fig. 36). In Hawke’s Bay, we projected the changes in flowering dates for two 
grape varieties grown in the region: pinot noir (F*=1219) and sauvignon blanc (F*=1282). For 
each of these varieties, the flowering date shifts to be 10 days earlier. The relative varietal 
difference in flowering date therefore remains approximately the same (4 days) when 
considering the climatic transition over time. However, there is uncertainty in these changes: 
see appendix 10.3 for the full collection of results across all GCMs for RCP8.5. 

From a varietal change perspective, it is interesting to see that compared to the current pinot 
noir flowering date, a sauvignon blanc from today that currently flowers a few days later than 
pinot noir, would actually flower earlier by the end of the century. This means that it would 
be possible to use the GFV model to select substitutable varieties, i.e. to target flowering in a 
region at a particular date, to attempt to keep existing temporal patterns same as todays. 
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Figure 36. Distribution of flowering dates for two varieties (F* 1219 = pinot noir and F* 1282 = 
sauvignon blanc) in the Hawke’s Bay region (the same regional extent as in Figure 37). 
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5 Discussion  

5.1 Synthesis of impacts of climate change 

Table 14 summarises the potential impacts of climate change in the three different sectors 
that were studied. It shows that impacts are emphasising the increased risk to production (in 
terms of changes to management, water stress, heat stress) and on receiving environments 
(increased risk in N leaching and pressure on water demand). 

Table 14. Synthesis of effects of climate change on three sectors 
 

Production Receiving environments 

Pastoral 
farming 

Shift in production towards spring 
Higher yields with increase RCP (3 locations) 
In the Hawke’s Bay: reduction in yield during 
summer in some locations (West and North), 
increase in yield in spring everywhere 
Livestock: higher risk of heat stress for 
animals, especially in the Waikato, Wairarapa 
and Canterbury plains 

Higher variability in N leaching depending on 
soil types 
Higher water demand in the Waikato, no 
change in Southland 
In the Hawke’s Bay: higher water limitation 
during spring and summer (especially West of 
the region) 

Arable 
crops 

Maize: 
Earlier sowing date for maize silage across 
regions, leading to higher catch crop yields 
No change in maize yield after accounting for 
earlier sowing date 
Higher soil N uptake 

Maize: 
Higher variability in N leaching (frequency and 
magnitude) 
Higher water demand in Waikato, Hawke’s Bay 
More variability in water demand in Southland 

Perennial 
crops 

Wine grape: 
Earlier flowering time across New Zealand, 
leading to higher risk on wine quality 

Kiwifruit: 
Higher water demand in the Waikato and 
Hawke’s Bay 
More variability in water demand in Southland 

 

5.2 Implications for primary industries 

Adaptation can involve tactical, strategic or transformational change. Though it is not the 
intention to provide an exhaustive list of these, some examples of potential changes are 
highlighted here for the three sectors studied in this report. 

5.2.1 Pastoral systems 

To maintain pastoral farm viability adaptations are frequently needed to deal with changes 
to pasture feed supply – both the total amount grown and its seasonality. Both lower and 
higher feed availability need to be dealt with. Lower supply means that if there are no 
changes to stock numbers productivity will decrease while higher supply with no changes in 
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stock number will lead to decreases in grazing pressure decreases and subsequent decline in 
pasture quality. 

Dairy farms are usually more intensive and profitable, and hence short-term tactical changes 
such as buying in supplementary feed and installing irrigation are able to be introduced. In 
contrast, for sheep and beef farming systems, especially those on hill country, possible 
changes are more difficult because the topography is not conducive to intervention-type 
changes such as tactical fertiliser use or irrigation. 

Tactical changes are short- and medium-term adaptations that involve modifying the 
existing production system using current management options. Typically, these are decisions 
that are made on short (day–month) timeframes and examples include the buying and 
selling of stock, buying in supplementary feed, and deciding on the amount of feed to be 
allocated to different stock classes. Many of these potential changes are already used on a 
day-to-day basis by farmers to manage changes to potential future (months ahead) pasture 
growth such as low soil moisture levels coupled with an impeding El Niño event which may 
lead to a higher risk of drier than normal conditions in eastern areas; in such a situation 
farmers may pro-actively destock in anticipation of lower feed supply. 

 Strategic changes are the second level of adaptation: these involve changing a current 
system to another known production system or making substantive changes to the current 
system, where practices and technologies are well known. For example, a farmer may change 
the ratio of sheep to cattle; such systems are known (preferably in New Zealand) and the 
risks and issues relating to new systems can be anticipated. However, these changes typically 
take a number of years to implement hence may not have an immediate impact. In addition, 
other issues need to be considered: for example, changing animal type from sheep to cattle 
may entail building new infrastructure such as cattle yards and better tracks. Other examples 
of longer-term strategic changes are increasing the next season's lambing percentage by the 
better feeding of ewes and changing stock genetics by introducing new, improved genetics. 
Examples of more wider ranging strategic adaptations may include introducing irrigation or 
buying additional land in another area to make the existing system more flexible and 
resilient. 

Last, there are transformational adaptations that involve innovation to develop completely 
new production systems or industries, which may include converting the farm from sheep 
and beef to a dairying operation or forestry. A prominent recent example in New Zealand is 
the planting of mānuka plantations. 

An important point to note is that when changes to farming systems are made in response 
to climate change, there are likely to be changes to other impacts to the receiving 
environment. For example, changing from a sheep system to cattle may increase the 
potential for nitrate leaching (and nitrous oxide emissions) because of bigger urine patches 
with higher N loadings. 
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5.2.2 Arable industry 

Results for arable crops highlight the relevance of accounting for crop management, which 
can be seen as a representation of farmer tactic adaptation, on climate change impacts. For 
example, the change in timing of crop growth in an agricultural system (e.g. spring crops as 
maize or winter crops as catch crop wheat) might imply different exposure to seasonal 
temperature in climate. In addition, insights on the importance of soil types, and how they 
are represented in biophysical simulations, are also key results from our analysis. Specifically, 
soil with low water-holding capacity will be naturally more prone to the increase in drought 
conditions but final outcomes depend on management aspects (e.g. use of irrigation and 
changes to sowing dates). Finally, inter-annual variability was shown to be a key metric to 
consider when analysing arable systems because some impact variables, such as N leaching 
losses, could be more affected by extreme events without necessarily large changes in 
median values. For example, the magnitude and frequency of high N leaching events might 
increase if high rainfall amounts occur more often before catch crop establishment (early in 
the autumn/winter season).  

5.2.3 Horticultural industry 

For wine grapes, noting the effect of climate change on phenology may require a change in 
cultivar to grape varieties adapted to warmer climate. One area of concern is the compressed 
time for fruit growth and the implications for sugar content and ultimately wine quality. 
Tactical adaptation may require controlling the vegetative/floral balance through winter 
pruning, or additional pruning in summer (Clothier et al. 2012). However, the warmer climate 
may also open new areas suitable for wine grape that were previously too cool. The model 
and script that were developed are spatially explicit, and can explore different varieties, 
allowing some future analyses on which variety may be more suitable to grow in the 
different parts of the country. 

The preliminary results using a simple water-balance model also suggest that better use of 
irrigation water will be a necessity, especially in Hawke’s Bay where the irrigation resource is 
already fully allocated.  

5.3 Model assumptions and limitations 

5.3.1 Drivers of variation in pasture production and N leaching 

By testing models with different levels of complexity at a point scale, we were able to analyse 
the utility and consequences of the level of assumptions from each model. Biome-BGC is 
simpler than APSIM (one soil layer, does not contain explicit grazing and management 
modules), yet captures the same trends in yield with climate change. While it was primarily 
used in this study for regional-scale analysis, ET-PET from Biome-BGC was shown to have 
significant correlation with yield, so it had enough complexity to provide useful information 
at the point scale. More general modelling (tier 2) or simpler metrics (tier 1) could be of 
considerable value where the particular responses to water are needed for a number of sites 
or for map level analysis. Biome-BGC’s ET-PET water indices for the year, or for summer, and 
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SPEI metrics for the summer months of January and February were very successful predictors 
in this analysis. WATYIELD outputs were not preferentially selected by the stepwise 
regression procedure: this may reflect the lack of inclusion of CO2 fertilisation in WATYIELD. 
The WATYIELD annualised Potential evapotranspiration Deficit was highly correlated with 
Biome-BGC’s equivalent ET-PET output and may be simpler to deliver. Yet SPEI metrics are 
simplest of all and performed well. 

Pasture production results from the model capable of representing detail in soils and 
management practices, APSIM, could only partially be explained (R2 = 0.56) by our next most 
complex model, Biome-BGC. The latter included a detailed daily plant physiology and 
biogeochemistry representing carbon, water and N, but with only limited representation of 
long-term average grazing and a one-layer soil. Results showing that less variance in pasture 
production within APSIM (79%) versus Biome-BGC (89%) can be explained by soil, GCM, 
water, and climate indices should be understood in the context that APSIM converts detail in 
soil and management into additional meaningful variation not in Biome-BGC. As a result, 
variation across the six soils accounted for more of the explained variance in APSIM. Thus, 
APSIM has considerable value wherever site-level simulations are desirable.  

We recognise the overlapping nature of the two SPEI2 January and February metrics. For 
determining suitable climate attributes for the LUS framework, further analysis of the data 
will be required. In the meantime, while these results should be regarded as preliminary, they 
provide a valuable assessment of climate attributes to be considered for the LUS framework.  

Our preliminary analysis of the pasture production data has identified two provisional 
climate attributes that could be considered for the LUS framework. The first is Nbhotdays25, 
given it is independent of other attributes, in contrast to SPEI. This Tier 1 attribute would 
require relatively little effort to obtain values for the framework, as data are included as one 
of NIWA’s projected climate variables. 

The second provisional attribute is SPEI2. However, further analysis will be required to 
determine which SPEI period and what months would be most suitable as a climate attribute 
explaining current and projected pasture production. This requirement is due to the overlap 
in monthly data for adjacent monthly SPEI2 (and SPEI3) variables. Regardless, the results 
strongly suggest that SPEI should be short-listed for inclusion in the LUS framework. 

While our data analysis of potential climate attributes aligned to N leaching is not as 
advanced as that undertaken for pasture production, our preliminary assessment would 
suggest SPEI could potentially be applied nationally, making it a provisional attribute for 
losses to water (specifically N leaching) to be considered for inclusion in the LUS framework. 
Given the provisional nature of the data analysis, further detailed analysis will be required to 
identify whether other climate attributes should be considered. Also, as noted above for 
production, further work is required to determine which SPEI period (1, 2 or 3 months) and 
which particular months would be most suitable as a climate attribute explaining current and 
projected N leaching from pasture systems. 

Three useful conclusions can be drawn from this programme. First, the analysis fully 
confirmed the value of recognising roughly three tiers of complexity in models and indices 
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used to derive outputs relating future production to climate attributes. Second, indices 
representing water budgets and SPEI metrics both capture considerable variation 
representing the role of seasonal climate and drought in determining productivity. Third, 
variation between soils was much more important than variation between GCMs, so that the 
number of GCMs included in future analysis can be reduced in favour of greater soil or 
regional diversity. The structure of this analysis may also be relevant to the study of nitrate 
leaching. 

5.4 Future opportunities and knowledge gaps   

Our research helped improve our understanding of the importance of climate change 
impacts on the resilience of agricultural land uses. We see this research helping stakeholders 
to integrate multiple decision criteria and better understand how to incorporate climate 
change within decision-making processes, while dealing with soil, water quality, and 
economic management objectives. 

Based on our findings, future research should focus on various aspects: 

 The impact of drought on key variables such as production or nitrate leaching should be 
investigated further. We were constrained by the six GCM projections from previous 
research. The use of a weather generator to create artificially low precipitations during a 
certain time of the year, could help by running the biophysical models like APSIM to see 
how crops may respond. The PFR analysis platform developed during the Discovery 
Project could enable this complex and demanding task through high performing 
computers. 

 Some of the climate attributes, especially the SPEI that were identified as explaining part 
of the production outcomes, could easily be mapped for the whole country (similarly to 
the global drought monitor  https://spei.csic.es/map/maps.html), to highlight potential 
areas affected by droughts as additional indicators to the already available NZDI from 
NIWA (https://www.niwa.co.nz/climate/information-and-resources/drought-monitor).  

 Overall, the structure of the statistical analysis attributing variance in modelled pasture 
production to candidate climate attributes and other variables was intended to guide 
the structure of future work, not the specific final selection of climate attributes for the 
LUS framework. Further data analysis will be required to identify this final selection. 
However, the work to date has provided valuable information on potential attributes for 
a more detailed data analysis. This methodology should also be extended to other crops 
(maize), and other output variables (N leaching, etc.). 

 The tiered-approach for the biophysical modelling was explored during this project but 
would need further scrutiny to make future recommendations on the utility, fit-for-
purpose and scale of use of the various approaches against different goals (quantitative 
projection of biomass change, adaptation options, direction of change, risk profiling) 
and different end-users (farmers, sector, government).  

 Climate is an important determinant of land use and significant biophysical impacts of 
climate change are expected. However, because climate change impacts are not yet 
widely considered in land-use decisions, there is still a need to evaluate when, where, 
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and how to begin factoring emerging climate change impacts into decision contexts and 
across sectors. This is a starting point for conversation and informing decision making, 
through an adaptive pathway framework that should be developed further. 
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Appendix 1 – WATYIELD Model 

The WATYIELD model is designed to calculate the water balance in soil with a certain crop 
cover. It was developed by Manaaki Whenua Landcare Research (MWLR)), following the FAO-
56 Guidelines for computing crop water requirements and the SWAT model (developed by 
USDA).  

The daily soil water balance is calculated by taking the inflow from precipitation to the 
system and removing water from canopy interception, drainage and evapotranspiration. The 
daily soil water content (𝑆𝑊𝐶) is obtained from the water balance equation: 𝑆𝑊𝐶 = 𝑆𝑊𝐶 + 𝑃𝐶𝑃 −  𝐼 − 𝑄 − 𝐸   (A1) 

where:  𝑆𝑊𝐶  soil water content in the root zone at the end of day i [mm] 𝑆𝑊𝐶  soil water content in the root zone at the end of the previous day i - 1 [mm] 𝑃𝐶𝑃  precipitation on day i [mm] 𝐼   interception on day i [mm] 𝑄  drainage on day i [mm] 𝐸  evapotranspiration on day i [mm] 

The initial 𝑆𝑊𝐶 was set equivalent to the Total Available Water (𝑇𝐴𝑊) in soil.  

1. Interception 

The interception (𝐼) is the free moisture intercepted by the crop canopy. It is determined by 
the interception fraction (𝐼𝐶𝐹) which is the estimation of total proportion of precipitation lost 
through interception, and the Interception Storage Capacity (𝐼𝑆𝐶) which is the maximum 
amount of water can be intercepted by canopy. Both 𝐼𝐶𝐹 and 𝐼𝑆𝐶 are obtained from previews 
study (Rowe, Jackson, & Fahey, 2002). The daily interception is defined by the equation: 

𝐼 =  𝑃𝐶𝑃 ∗ 𝐼𝐶𝐹 − 𝐼 , 𝐼𝐶 < 𝐼𝑆𝐶𝐼𝑆𝐶 − 𝐼 , 𝐼𝐶 ≥ 𝐼𝑆𝐶 (A2) 

where 𝐼  is the interception on day i [mm], and the 𝐼 is the intercepted water left from the 
previous day. The 𝐼 in the first day was set to 0, and then calculated by subtracting the 
evaporated water from canopy from the interception. 𝐼 = 𝐼 − 𝐸    (A3) 

The 𝐸  is obtained from section 3.  
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2. Drainage 

Whenever the 𝑆𝑊𝐶 exceed the 𝑇𝐴𝑊, water lost through either percolation or runoff. This 
part of outflow is considered as drainage (𝑄). It is given by: 

𝑄 = 𝑆𝑊𝐶 − 𝑇𝐴𝑊, 𝑆𝑊𝐶 > 𝑇𝐴𝑊0, 𝑆𝑊𝐶 ≤ 𝑇𝐴𝑊 (A4) 

Two assumptions were made here. One is that there is no runoff flow form one spatial unit 
(e.g. pixel cell of raster data) to the other, and the other is that before the soil water reaches 
the field capacity no drainage occurs.  

3. Evapotranspiration 

The evapotranspiration consists of three parts, water evaporates from canopy (intercepted 
water) 𝐸 , transpiration from crop and the evaporation from soil. Since transpiration from 
crop and evaporation from soil are hard to distinguish, they have been considered as a single 
crop evapotranspiration 𝐸𝑇 .   𝐸 = 𝐸   + 𝐸𝑇    (A5) 

The estimation of evapotranspiration is based on the Potential Evapotranspiration (𝑃𝐸𝑇) 
which is the evaporation climatic demand. Many scientific literatures use another 
denomination, Reference Crop Evapotranspiration (𝐸𝑇 ) to represent 𝑃𝐸𝑇. 𝐸𝑇  is an 
evapotranspiration rate from a reference surface which is a hypothetical grass reference crop 
with specific characteristics. It is the evaporative demand of the atmosphere independently of 
crop type, crop development and management practices. 𝐸𝑇  can be computed from weather 
data using Penman-Monteith method (Allen, Pereira, Raes, & Smith, 1998). Although some 
recent research (Katerji & Rana, 2011; McMahon, Peel, Lowe, Srikanthan, & McVicar, 2013) 
demonstrated that 𝑃𝐸𝑇 is not equivalent to 𝐸𝑇 , in this study, due to the availability of data, 
we assume that they are equivalent.  

The daily evaporation from canopy, 𝐸   , is determined by the interception of the day as 
well as the  𝐸𝑇    (the 𝐸𝑇  on day i)(Liu, Wang, Xue, Singh, & Ma, 2015; Neitsch, Arnold, & 
Kiniry, 2005). 

𝐸   = 𝐼 , 𝐸𝑇   ≥ 𝐼𝐸𝑇   , 𝐸𝑇   < 𝐼  (A6) 

Any free water present in the canopy is readily to evaporate, and it contribute to actual 
evapotranspiration. Thus, we first remove the 𝐸  from the 𝐸𝑇  , to get the remaining, the 
evaporative water demand for a reference crop(Neitsch et al., 2005). 𝐸𝑇   = 𝐸𝑇   − 𝐸    (A7) 

Once 𝐸𝑇  is calculated, we can estimate the crop evapotranspiration under standard 
condition (crops growth under optimum environment conditions and achieve full production) 
(𝐸𝑇 ). It is derived from the 𝐸𝑇   using Crop Coefficient (𝐾 ) to represent different vegetation 
types. 𝐾  is determined by a variety of crop characteristics, such as leaf anatomy, stomatal 
characteristics, aerodynamic properties and albedo. In this study, we use 𝐾  from FAO-56 
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report (Allen et al., 1998) as well as previous studies in MW, however, the seasonal difference 
of 𝐾  is not taken into account.  𝐸𝑇 = 𝐾 ∗ 𝐸𝑇   (A8) 

In reality, the optimum environment condition does not always exist for crops growth. As soil 
dries, the root can initially get enough water from soil to have an evapotranspiration as same 
as 𝐸𝑇 . However, at a certain point (soil water content below a threshold), the crop can no 
longer extract enough water through the roots and becomes water stressed, and we call this 
threshold Trigger Point (𝑇𝑃). Whenever the crop is under this water stress situation, the 𝐸𝑇  
start to decrease, and this decreasing rate is described by the water stress coefficient (also 
called transpiration reduction factor), 𝐾 . Therefore, the actual crop evapotranspiration (under 
non-standard condition), 𝐴𝐸𝑇 , is calculated by: 𝐴𝐸𝑇 = 𝐾 ∗ 𝐸𝑇 = 𝐾 ∗ 𝐾 ∗ (𝐸𝑇 − 𝐸 ) (A9) 

Since we only focus on the water balance, here we assume factors other than water, e.g. soil 
salinity, fertility and animal impacts, are under standard condition.  

The transpiration reduction factor 𝐾  dependent on three soil water properties: 

 Total Available Water (𝑇𝐴𝑊) – the capability of soil to retain water available to 
plants, and it is the difference between field capacity and permanent wilting point 
(𝑊𝑃); 

 Readily Available Water (𝑅𝐴𝑊) – the fraction of TAW that plants can extract water 
from the root zone without suffering water stress; 

 Soil Water Content (𝑆𝑊𝐶) – the actual amount of water held in soil. 

Thus when 𝑆𝑊𝐶 below the 𝑇𝑃, 𝐾  is calculated by the function: 𝐾 =   (A10) 

 

Figure 37. Ks as a function of SWC. 
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4. Data and parameters 

Three types of data are required for setting up parameters in the water balance model, which 
are climate, soil and crops. The detail of data including source, model used properties and 
format etc. are listed in the table below. 

Table 15. Data sources for WATYIELD 

           
Model                                      
Data 
Parameters 

Type Data Format 
Model 
used 

Properties 
Source 

𝑃𝐶𝑃 Precipitation 

Climate 

Daily PCP 
raster 

GeoTiff N/A NIWA 𝐸𝑇  Reference Crop 
Evapotranspiration 
(assume it is equivalent 
to PET) 

Daily PET 
raster 

𝑇𝐴𝑊 Total Available Water 
Soil S-Map ESRI 

Shapefile 
TAW 

MW 𝑅𝐴𝑊 Readily Available Water RAW 𝐾  Crop Coefficient 

Crop 

𝐾  

Text N/A 

FAO, MW 𝐼𝐶𝐹 Interception Fraction 𝐼𝐶𝐹 

MW 𝐼𝑆𝐶 Interception Storage 
Capability 

𝐼𝑆𝐶 
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Figure 38. WATYIELD model workflow. 
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Appendix 2 – N leaching visual plots 

The following figures are visual plots illustrating the influence of the eight selected climate 
attributes (ETPET, LRelSM, ASoilDev, WYAETPET, PCP, PET, AET and SPEI) and modelled N 
leaching data (MNO3, kg N/ha) from 2006 to 2098, for 3 RCPs (2.6, 4.5 and 8.5) and the past 
RCP (from 1990 to 2006) and 6 soil/regions (Edendale in Southland, Horotui in Waikato, 
Pukemutu in Southland, Ruataniwha in Hawke’s Bay, Te Kowhai in Waikato, and Waimakariri 
in Hawke’s Bay). Each attribute represents 1 or more different periods. For example, ETPET is 
presented as an annual value (ETPETAnnSu) or as seasonal values (ETPETAu, ETPETWi, etc.) 

Because the code for the eight climate attributes shown in the figures in this appendix are 
not identical to those listed in Table 6, a key is provided below: 

Table 16. Equivalent code used in the appendix figures 

Climate attribute Code used in figures in this appendix 

PCP PCP 

PET PET 

AET AET 

AET - PET WYAETPET 

ET - PET ETPET 

Relative Soil Moisture LRelSM 

SoilDev ASoilDev 

SPEI SPEI 
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Appendix 3 – GFV: modelling grapevine flowering dates for a single 
variety using different global climate models (GCMs) 
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