
 
 

  

 

August 4, 2021 

Authored by: Phillip West, Sarah Sorensen & Miguel Tapia 

Orchard soil characterisation 



 

 
 

Content table 
 

Executive summary ................................................................................................................................. 1 

Introduction ............................................................................................................................................ 3 

1.1 Soil chemistry (Nutrients) ........................................................................................................ 3 

1.2 Soil biology .............................................................................................................................. 4 

1.3 Soil physical properties ............................................................................................................ 7 

2 Methodology ................................................................................................................................... 9 

2.1 Orchard selection .................................................................................................................... 9 

2.2 Tree selection ........................................................................................................................ 10 

2.3 Sampling collection and delivery ........................................................................................... 10 

2.4 Visual Soil Assessment (VSA) ................................................................................................. 10 

2.5 Productivity data ................................................................................................................... 11 

2.6 Statistical analysis .................................................................................................................. 11 

3 Results ........................................................................................................................................... 12 

3.1 Data summary ....................................................................................................................... 12 

3.2 Statistical analysis .................................................................................................................. 16 

3.3 Machine learning ................................................................................................................... 20 

4 Conclusion and discussion ............................................................................................................. 25 

4.1 Soil chemistry (Nutrition) ...................................................................................................... 25 

4.2 Soil biology ............................................................................................................................ 27 

4.3 Soil physical properties (Visual soil assessment) ................................................................... 28 

4.4 Leaf and fruit nutrients .............................................................................................................. 28 

4.5 Potential future work ............................................................................................................ 29 

References ............................................................................................................................................. 30 

5 Appendix ....................................................................................................................................... 32 

5.1 Sampling collection ............................................................................................................... 32 

5.2 Sampling delivery .................................................................................................................. 33 

5.3 Visuals soil assessment .......................................................................................................... 34 

5.4 Statistical analysis description ............................................................................................... 36 

5.5 Fruit and leaves linear regression against yield ..................................................................... 38 

5.6 Predicted means and confidence intervals of individual indicators ...................................... 44 

5.7 Importance estimate of the set of variables in predicting high and low yield ....................... 46 

5.8 Decision trees ........................................................................................................................ 50 

 



 

Page 1 of 53 
 

Executive summary 
 
Supporting avocado growers to be more profitable is an industry goal, with a target of increasing yields 
to an average of at least 15 t/ha of high-quality fruit. More growers are looking to their soils to improve 
economic and environmental outcomes, particularly soil biology. This study aims to explore the role of 
different soil properties in relation to yield. Data from this study will also be incorporated into the 
Avovantage project looking at on-orchard practices that can help reduce the risk of fungal rots. The 
analysis relating to fruit quality is not included in this report but will rather be included in the 
Avovantage reporting channels. 
 
Key variables relating to soil physical, biological and chemical composition were successfully collected 
from groups of high performing orchards (>15t/ha) and lower yielding orchards in the Bay of Plenty 
region. Results of this study provide a valuable comparison to growers wishing to test their own soil to 
see what variable may be influenced to potentially improve yields.  
 
Nutrient testing on soil, leaf, fruit skin and flesh was conducted by Hill Laboratories. Commercially 
available biological soil tests from Hill's Laboratories, Linnaeus and Soil Foodweb were used to assess 
soil biology and a visual soil assessment system was used to assess soil physical properties. A 
comparison of soil biology results from Soil Foodweb and Linnaeus highlighted that common variable 
results did not agree with each other. The different tests use different methodologies but further 
investigation is required to understand why these different tests are providing different results. 
 
Aspects of soil physical, biological and chemical composition all showed importance in classifying 
whether an orchard was high yielding or not. None of the leaf nutrient results showed a correlation 
with yield classification, but the sample size is small relative to most nutrient studies. Some of the 
correlations observed were contrary to what is expected to contribute to a high performing soil. It may 
be that there are common management practices among high performing orchards that negatively 
impact soil characteristics. Therefore, the correlations seen within the soil variables may be more 
related to the management practice rather than the high yields common to these orchards. 
 
Higher levels of iron, low levels of aluminium, and high C/N ratio were chemical components of soil that 
were important predictors of yield and correlated with the group of orchards achieving over 15t/ha. Of 
the biological variables measured, higher ciliates, lower flagellate protozoa communities, higher dry 
weight, lower total bacteria and lower gram-negative bacteria correlated with higher yielding orchards. 
Several of these biological correlations are counter to what might be expected of a highly productive 
soil.  
 
Soil worm counts was the only physical soil observation to correlate with orchard yield classification 
with lower worm counts present on higher yielding orchards. Again, this is counter to what is expected 
in a highly productive soil. 
 
A combination of the Hill Laboratories chemical variables and the Soil Foodweb biological variables 
showed the highest classification accuracy of 79%. Nutrient variables had a higher importance than 
biological variables in classifying orchard performance within the orchards in this study. Testing the 
variables deemed as important for classification on a wider data set and across multiple seasons would 
be required before confident assumptions can be made that these variables truly correlate with higher 
yielding orchards. 
 
The variables collected provide a valuable benchmark from high producing orchards in different regions 
for growers to compare their own soils to. This will support decision making on whether soil 
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amendments or changes to an orchards management may be the best avenue to pursue to improve 
yields. The results also highlight that there might be improvements that can be made to the soils of 
high yielding orchards that may further enhance yields.  
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Introduction 
 
Supporting avocado growers to be more profitable is an industry goal, with a target of increasing yields 
to an average of 15 t/ha of high-quality fruit. However, this improvement needs to be both 
environmentally and economically sustainable. As a result, more growers are looking to their soils to 
improve economic and environmental outcomes, particularly soil biology. As well as playing direct roles 
in supporting orchard production, understanding soil biology can provide clues to other soil properties 
that influence productivity, such as physical structure and chemical composition.  
 
Currently, there is limited information pertinent to soil characteristics and their influence on yield and 
fruit quality in New Zealand avocado orchards. 
 
Historically, the main focus for avocado orchard soils has been the chemical aspect of the soil and what 
fertiliser should be applied to maintain or improve the health and yield of the tree. Literature shows 
that nutrient amounts and ratios are associated with tree yields and fruit quality; however, soil physical 
and biological characteristics also contribute to nutrient availability and tree performance (Crowley, 
2007). 
 
This project aims to collect a combination of biological, chemical, and physical avocado orchard soil 
data and identify which attributes influence yield. While the number of orchards being looked at is 
limited, outcomes may help establish biological benchmarks, nutrient target levels and prompt 
discussion about managing inputs better to achieve improved production and environmental 
outcomes. This project will also enhance knowledge about how soil characteristics interact in avocado 
orchards. Additionally, leaves and fruit nutrient data were collected and analysed to facilitate the 
interpretation of soil data and explore a possible influence on yield. 
 

1.1  Soil chemistry (nutrients) 

 
Nutrient amounts and nutrient ratios are essential for tree health, yield and fruit quality. Soil pH and 
relative amounts of some nutrients may limit the availability of uptake of key nutrients. As with any 
crop production, a portion of nutrients is removed with the crop that is harvested. Additional nutrients 
can be lost through leaching, erosion and volatilisation, and everything should be done to minimise this 
loss. Nutrients that are removed or lost need to be replaced to ensure crop production remains 
sustainable. As trees take macronutrients and micronutrients from the soil, it is crucial to monitor 
nutrient levels through soil testing to understand which nutrients need to be replaced. Below is a brief 
summary of the roles of some key nutrients (NZ Avocado Growers' Association Inc., 2018). 
 

 Nitrogen is essential for the synthesis of proteins, including enzymes, DNA, RNA and hormones. 
Therefore, nitrogen has one of the most significant effects on tree behaviour. The use of 
nitrogen fertiliser is an important management tool for growers, but must be used carefully as 
there is a narrow optimal range. Excessive nitrogen can promote excessive leafy growth to the 
detriment of fruit production and quality. Traditionally spring applications of nitrogen have 
been deemed important for supporting vegetative flush, especially if flowering is heavy. More 
recently, this is coming under greater scrutiny in potentially limiting calcium uptake into fruit, 
negatively impacting fruit quality.  

 Phosphorous is used to synthesise ATP (a cell's source of energy), DNA, RNA, cell membranes 
and sugar storage. Phosphorous is particularly important when trees are becoming established 
as it is key to good root development.  

 Potassium is important for many key functions within the plant, including opening and closing 
of stomata and the ionic balance of cells. It can make up approximately 6% of the plant by dry 
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weight, and international literature suggests that it is removed in fruit at harvest at a greater 
rate than other nutrients.  

 Calcium is a key element for plant growth and cell wall development. It is involved with 
hormone signalling pathways as well as cell wall integrity and permeability. Although it is 
thought to be a key element for disease management in avocados, there is little research to 
support this in New Zealand conditions; however, some international studies have correlated 
high levels of soil calcium with lower levels of post-harvest fruit rots.  

 Boron is important for pollen germination, pollen tube growth, ovule viability and fruit set. It is 
also involved in carbohydrate metabolism and cell division. New Zealand research supports the 
importance of sufficient boron for fruitset, and boron is frequently applied as a foliar spray at 
the cauliflower stage of flowering to maximise fruitset. 

 Magnesium is an essential component of chlorophyll, involved in photosynthesis and the 
conversion of sunlight into carbohydrates for the plant to use. 

 Sulphur is a key element in protein synthesis. 

 Trace elements are a range of other nutrients that are essential for normal plant growth and 
function. These include iron, manganese, zinc, copper, molybdenum and nickel. They are often 
essential as cofactors for enzymes. It is important to recognise that many of these are removed 
from the orchard with the fruit, and therefore, their replacement should be considered in any 
good fertiliser plan.  

 

1.2 Soil biology 

 
Avocado trees have shallow roots that are predominantly in the first 30 cm of topsoil (Figure 1). The 
zone where tree roots and microorganisms interact is called the rhizosphere, and several symbiotic 
relationships happen between tree roots and microorganisms.  
 

 
Figure 1. Exposed feeder roots in the avocado tree (The Mid North, April 2021). 

 
Some of the most relevant roles/functions of soil biology for avocado production are listed below. 
 

1.2.1 Nutrient harvesting 
 
Nutrient harvesting refers to the trees ability to uptake nutrients. This capability can be increased by 
root association with particular microorganisms. Mycorrhizae are among the most successful 
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associations between fungi and plant roots, including the avocado tree. The fungus colonises the roots 
and creates a network of fungal mycelia in the root cortex. The mycelium extends outside the roots 
into the soil and increases the plant's ability to absorb nutrients (Sullia, 1991). The tree supply's sugars 
to the mycorrhizae fungi in exchange for phosphorus and other nutrients that mycorrhizae help to 
collect. 
 

 
Figure 2. Mycorrhiza colonising the avocado roots (Herrera and Marcelo n.d.). 

 

1.2.2 Nutrient cycling 
 
Nutrient cycling refers to the flux of nutrients from one pool to another (e.g. carbon and nitrogen 
cycles). In the context of an orchard, the focus is generally on nutrients transitioning into a form that 
becomes available to the plant.   
 
Carbon plays an essential role in the active and passive (hummus) fraction of soil organic matter—for 
instance, some of the soil's physical characteristics include water holding capacity and cation exchange 
capacity are influenced by carbon content. The first step in carbon cycling is typically done by 
saprophytic fungi that can catabolise some sources of carbon that are difficult to break down, such as 
lignin and cellulose. In addition, these fungi make bioproducts (e.g. organic acid) available for other 
microorganisms (Ingham, 2021). Another relevant microorganism genus is the Actinomyces. These 
hyphal bacteria can metabolise difficult to break down compounds such as chitin, cellulose and 
hemicellulose (Pepper, Gentry, and Gerba, 2015).  
 
Nitrogen can be in different forms. Some are very easily lost from the soil through leaching or from 
volatilisation into gas. The nitrogen cycle is dominated by reduction and oxidation reactions where 
certain species of bacteria can help transform nitrogen into different forms. For example, certain 
species of bacteria are involved in the fixation of nitrogen (N2) gas from the air into ammonia that plants 
can use. Nitrifying bacteria convert ammonia (NH3) to nitrate (NO3

-), which plants can use as well but is 
more easily leached from the soil than ammonia. Denitrifying bacteria convert nitrate to gaseous forms 
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of nitrogen like nitrous oxide (N2O) and N2, removing nitrogen from the soil. Denitrifying bacteria are 
more likely to convert nitrogen to a gaseous form under waterlogged or compact soil environments 
where oxygen is less available. Pseudomonas (Kumar et al., 2017) and protozoans also generate 
ammonia as part of their metabolism, adding to the nitrogen cycle. 

 

1.2.3 Disease suppression 
 
Among all the diseases that affect the avocado tree, root rot is the most important. This pathology is 
frequently associated with the oomycete Phytophthora cinnamomi. There are several root rot 
management methods, and when they are applied in combination, the control efficacy increases 
(Ramirez-Gil, Castaneda-Sanchez, and Morales-Osorio, 2016). 
 
Some microorganisms can also reduce the impact of this disease. For example, some isolates from 
avocado roots closely related to Bacillus acidiciler have been shown to produce volatile metabolites 
that can reduce P. cinnamomi mycelial growth by 76%. (Méndez-Bravo et al., 2018). 
 
Pseudomonas also play an essential role in disease suppression due to their ability to produce 
antibiotics and cell wall-degrading enzymes that target pathogenic microorganisms (Kumar et al., 2017). 
An interesting example is Pseudomonas pseudoalcaligenes, which controls white root rot disease in 
avocados caused by  Rosellinia necatrix by competing for nutrients and spots in the roots (Pliego et al., 
2019). 
 
Ciliates are protozoans that can propel themselves and have predatory behaviours. This group feeds 
preferably on anaerobic bacteria, which can predominate in prolonged waterlogged soils.  
 

1.2.4 Tree health 
 
Soil biology can support tree health by making more nutrients available to the plant, suppressing 
pathogens, and producing phytohormones (e.g. Pseudomonas, which colonise roots, and Actinomyces, 
which can form hyphae and  make phytohormones that stimulate the plant immune system (Kumar et 
al., 2017; Pepper, Ian L. and Gerba, Charles P., 2015). The benefit of mycorrhizae in tree health has 
been well known for decades, as it helps the tree absorb nutrients directly from soil (Menge et al., 
1978).  
 

1.2.5 Drought tolerance/soil structure 
 
It is well known from other crops that certain microorganisms can increase drought tolerance; this is 
the case for Actinomyces (Grover et al., 2016; Pepper, Ian L. and Gerba, Charles P., 2015) and 
Mycorrhiza fungi (Li et al., 2019). These microorganisms colonise the soil by expanding their hyphae, 
opening the soil structure and effectively increasing the soil volume that the roots can extract water 
and nutrients from.  
 

1.2.6 Earthworm numbers 
 
Earthworms can be overlooked in soil analysis, but their presence is beneficial to tree health by making 
essential nutrients available to the tree (e.g. nitrogen, phosphorus, potassium and magnesium). 
Earthworms also improve soil structure improving porosity, aeration and water mobility. In pastures, 
soils with significant earthworms can have up to threefold more microorganisms and up to 6-7 times 
more Actinomyces than low worm soils (Shepherd, 2019). Different earthworms work at different 
depths, and a healthy community has a mixture of species (see table below). 
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Table 1. Common earthworms species in agricultural lands in New Zealand and the zone where they inhabit (Shepherd, 2019). 

Earthworm species Zone 

Lumbricus rubellus Superficial litter 

Aporectodea caliginosa Topsoil 

Aporectodea longa Subsoil 

 
Earthworms also play an essential role in transforming organic matter into humus by bonding carbon 
to clay particles. Since this fraction is stable, it adds to the total organic carbon pool of the soil. However, 
there is limited information on the relationship between avocado orchards and earthworm's numbers. 
One study showed earthworms in avocado orchard soils avoided areas of copper contamination (>34 
mg/kg)(Van Zwieten et al., 2004)  
 

1.3 Soil physical properties 

 
The physical structure of soil influences water dynamics, water holding capacity, root penetration and 
aeration. Key soil physical characteristics are described below. 
 

1.3.1 Soil texture 
 
Soil texture is determined by the proportion of different particles sizes in the soil. These particles are 
sand (>0.06 mm), silt (0.06-0.002 mm) and clay (<0.002 mm). Different proportions of these particles 
influence fundamental soil properties such as water-holding capacity, aeration, soil structure drainage, 
and nutrient retention. 
 

1.3.2 Soil structure 
 
Soil structure relates to the compaction of the soil, aggregates and clods of soil and the proportion of 
macro and micropores. A good soil structure is dominated by friable and fine aggregates with sub-
rounded shape and no significant clodding. These soils have excellent water mobility, aeration, gas 
exchange capacity, soil temperature management and potential for root development. Conversely, a 
poor soil structure increases susceptibility to drought, ponding, and a higher risk of erosion. It also 
decreases the supply of oxygen to the roots, and therefore, can limit the availability of some nutrients 
such as nitrogen, phosphorus, calcium, magnesium, zinc, and boron (Shepherd, 2019). 
 
 

                    
Figure 3. Left: Avocado soil with good soil structure which is friable. Right: Avocado soil with a poor structure where aggregates 
are predominant. 
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1.3.3 Potential rooting depth 
 
Potential rooting depth is the depth that roots can potentially explore before a physical barrier such as 
a hardpan prevents further root expansion. This indicator influences some essential elements in tree 
health, such as water holding capacity, availability of nutrients, and resilience against drought. Although 
avocado trees have the majority of their roots relatively shallow in the soil, deeper roots help support 
the tree and having a deep potential rooting depth is beneficial. 
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2 Methodology 
 
Twenty nine orchards were sampled in this project with all production data, nutritional, biological and 
physical tests carried out on each orchard. Figure 4 depicts the number of orchards per region and the 
type of information collected for this project.  
 

 

Figure 4. Overview of the Soil characterisation project with the different sources of information. 

 

2.1 Orchard selection 

 
Orchards from the three main growing regions of the Bay of Plenty (BOP), Mid North (MN) and Far 
North (FN) were selected: 

 In the Bay of Plenty, 17 of the chosen orchards were part of the Avovantage project as there is 
a robust amount of data already collected from these trees relating to fruit quality, and the 
orchards represent a range of yields for comparison purposes.  

 Additionally, in the Bay of Plenty, two orchards that are part of the New cultivar trials were also 
included to provide information on orchards achieving over 15t/ha.  

 In the Mid and Far North, ten high yielding orchards (five in each region) producing above 15 
t/ha over four years were included. 
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2.2 Tree selection 

 
Ten trees were assessed in each orchard. Soil, root, leaf and fruit samples were collected during autumn 
2021 for testing. Trees on the BOP orchards were pre-selected as they have been monitored as part of 
the Avovantage or New cultivar trials. 
In the Mid and Far North, ten representative trees were selected in the best yielding block. The criteria 
for selecting the trees were: 
 

 Represent the average condition (health and crop load) of trees in the block. 

 Not edge/end of row trees. 

 Planted in similar soil. 

 Similar age. 

 Hass scion with Zutano rootstock. If unavailable, this was recorded. 

 Even distribution over the sampling area. 

 

2.3 Sampling collection and delivery 

 
Soil was sampled in a quadrant around each tree to ensure that the samples were a reflective 
aggregation from the trees and block; a similar protocol for leaves and fruit was implemented (Appendix 
5.1). Additional to soil, leaf and fruit samples, roots were collected for mycorrhiza analysis in the Soil 
Foodweb test. (Appendix 5.2).  
 
Samples were tested as follows: 
 

 Soil microbiology: Soil samples were tested using three commercially available soil biology tests. 
Hot Water Extractable Carbon (HWEC), Advanced Biological Package, and Microbe Wise tests 
provided by Hill Laboratories, Soil Foodweb, and Linnaeus Laboratory, respectively. 
 

 Nutrient testing: Soil, leaf and fruit samples underwent nutritional analysis by Hill Laboratory, 
including Basic soil, Organic soil profile, Total copper, Mehlich 3 profile, fruit nutrients and leaf 
nutrients. 

 

2.4 Visual Soil Assessment (VSA) 

 
The VSA was performed following the Scorecard's instructions (see Appendix 5.3.2) that reference the 
book Visual Soil Assessment, Vol 1 by Graham Shepherd Assessment includes a range of visual indicators 
relating to soil structure, soil texture, number of earthworms and potential rooting depth. It was 
assumed that the grower was uniformly treating the area within the dripline of each tree. Three VSAs 
per orchard/block were undertaken. See Appendix 5.3 for methodology. 
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2.5 Productivity data 

 
The orchard 4-year average yields were taken from the industry database that gathers information 
directly from registered packhouses. Orchard selection was based on data from the 2016-17 to 2019-
20 seasons, and yield data from the 2017-18 to 2020-21 seasons was used in the analysis as it became 
available later in the project. This did not change the orchard selection criteria for the high yielding 
orchards in the Mid and Far North. 
 

2.6 Statistical analysis 

 
Results were statistically analysed by NZ Avocado and Plant & Food Research using a variety of statistical 
analysis and machine learning tools. Machine learning potentially provides predictive variables and 
combinations of variables for yield outside the constraints of traditional statistical analysis where results 
are only significant if they have an accuracy of 90, 95 or 99%. See appendix 5.4 for methodology. 
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3 Results  

3.1 Data summary 

3.1.1 Productivity 
 
Orchards were classified as either low or high yielding based on a four year average from the 2017-18 
to 2020-21 seasons. Of the 29 selected orchards, 13 were classified as low yielding, and 16 were 
classified as high yielding. (Table 2).  
 
Table 2. Selected orchards of high (H) and low (L) yielding as well as a yield information source. The orchard code start with the 
region's initial and then a random position. 

Orchard code Average yield (t/ha) Category (yield) Related project Yield information; level 

BOP-1 8.2 L Avovantage Last 4 seasons; whole orchard 

BOP-2 7.6 L Avovantage Last 4 seasons; whole orchard 

BOP-3 8.7 L Avovantage Last 4 seasons; whole orchard 

BOP-4 9.4 L Avovantage Last 4 seasons; whole orchard 

BOP-5 10.1 L Avovantage Last 4 seasons; whole orchard 

BOP-6 11 L Avovantage Last 4 seasons; whole orchard 

BOP-7 11.1 L Avovantage Last 4 seasons; whole orchard 

BOP-8 11.5 L Avovantage Last 4 seasons; whole orchard 

BOP-9 11.9 L Avovantage Last 4 seasons; whole orchard 

BOP-10 11.9 L Avovantage Last 4 seasons; whole orchard 

BOP-11 12 L Avovantage Last 4 seasons; whole orchard 

BOP-12 12.3 L Avovantage Last 4 seasons; whole orchard 

BOP-13 14.6 L Avovantage Last 4 seasons; whole orchard 

BOP-14 18.1 H New cultivar trial Last 4 seasons; block level 

BOP-15 18.1 H Avovantage Last 4 seasons; whole orchard 

BOP-16 18.3 H Avovantage Last 4 seasons; whole orchard 

BOP-17 19.6 H Avovantage Last 4 seasons; whole orchard 

BOP-18 17.6 H New cultivar trial Last 3 seasons; block level 

BOP-19 26.5 H Avovantage Last 4 seasons; whole orchard 

FN-1 15 H NA Last 4 seasons; whole orchard 

FN-2 15 H NA Last 4 seasons; whole orchard 

FN-3 16.6 H NA Last 4 seasons; whole orchard 

FN-4 17.9 H NA Last 4 seasons; whole orchard 

FN-5 19 H NA Last 4 seasons; whole orchard 

MN-1 15 H NA Last 4 seasons; whole orchard 

MN-2 16.4 H NA Last 4 seasons; whole orchard 

MN-3 16.6 H NA Last 4 seasons; whole orchard 

MN-4 18.9 H NA Last 4 seasons; whole orchard 

MN-5 21.4 H NA Last 4 seasons; whole orchard 
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3.1.2 Soil biology, nutrients and visual soil assessment 
 
There were large ranges for some biological variables. For example, flagellates and amoebae (Table 4), 
and Hot Water Extractable Carbon (Table 6). There was also insufficient variation in some variables, 
such as the number and colour of soil mottles (Table 3). Initial analysis and observations highlighted 
variables with insufficient variation and variables with large missing data gaps. These were excluded 
from further statistical analysis because variables with low variability provide no benefit to the model, 
and missing data decreases the dataset's reliability.  
 
Table 3 to Table 7 summarises variables measured by soil visual assessment, Soil Foodweb, Linnaeus 
and Hill Laboratories. Ranges are the minimum and maximum of results, not recommended ranges.  
 
The visual soil assessment methodology scores from 0 (poor condition) to 2 (good condition) across all 
the variables. All the orchards assessed had total scores over 28 that classified their soil in the best 
possible classification of good quality according to Graham Shepherd methodology (see Appendix 5.3). 
  
Table 3. Regional summary of soil visual assessment variables. 

Name Unit BOP <15t/ha 
Average (min-max) 

BOP >15t/ha 
Average (min-

max) 

MN 
Average (min-

max) 

FN 
Average (min-

max) 

Target 

Soil texture Indicator 1.3(1.0-1.5) 1.5(1.3-2.0) 1.3(0.8-1.5) 1.8(1.5-2.0) 2.0 

Soil structure Indicator 1.6(0.9-2.0) 1.9(1.7-2.0) 2.0(1.8-2.0) 1.9(1.5-2.0) 2.0 

Number and colour 
of soil mottles 

Indicator 2.0(1.8-2.0) 2.0(2.0-2.0) 2.0(2.0-2.0) 2.0(2.0-2.0) 2.0 

Soil colour Indicator 1.9(1.0-2.0) 2.0(2.0-2.0) 2.0(2.0-2.0) 2.0(2.0-2.0) 2.0 

Earthworms score 0(0-0) 0(0-0) 0(0-0) 0(0-0) 2.0 

Soil smell Indicator 1.8(1.3-2.0) 1.9(1.3-2.0) 2.0(2.0-2.0) 1.9(1.3-2.0) 2.0 

Potential rooting 
depth 

Indicator 2.0(1.8-2.0) 2.0(2.0-2.0) 1.7(0.8-2.0) 1.7(1.3-2.0) 2.0 

 
Table 4. Regional summary of Soil Foodweb biological variables with labels used in this report. 

Name Label Unit BOP <15t/ha 
Average (min-max) 

BOP >15t/ha 
Average (min-

max) 

MN 
Average (min-

max) 

FN 
Average (min-

max) 

Target 

Dry Weight SF01 --- 0.61(0.57-0.68) 0.62(0.5-0.73) 0.61(0.57-0.64) 0.79(0.71-0.85) 0.45-
0.85 

Active Bacteria (AB) SF02 mg/kg 30.1(15.1-38.1) 25.2-13.3-35.2) 37.0(29.1-46.0) 20.8(16.9-24.0) >30 

Total Bacteria (TB) SF03 mg/kg 361.5(245.4-482.6) 319.7(236.9-
535.2) 

391.0(246.2-
487.8) 

282.6(237.9-
345.7) 

>300 

Actinobacteria SF04 mg/kg     <20 

Active Fungi (AF) SF05 mg/kg 3.61(0.08-10.39) 3.07(0.07-9.02) 11.28(3.52-
16.35) 

1.36(0.06-3.01) >150 

Total Fungi (TF) SF06 mg/kg 384.4(204.8-513.4) 468.6(136.6-
911.0) 

227.7(140.9-
445.9) 

259.0(176.7-
412.8) 

>1,500 

Hyphal Diameter SF07 µm 2.92(2.75-3.00) 3.0(3.0-3.0) 2.85(2.75-3.00) 2.90(2.75-3.00)  

Flagellates SF08 number/g 17,276(2,038-55,500) 11,630(782-
44,249) 

13,909(4,450-
43,325) 

7,918(3,266-
18,588) 

>20,000 

Amoebae SF09 number/g 10,613(2,038-24,426) 7,111(2,237-
9,183) 

5,182(733-
9,376) 

2,150(371-
7,247) 

>20,000 

Ciliates SF10 number/g 177(43-472) 391(79-836) 563(433-808) 138(38-329) <334 

Endo (colonization) SF11 % 0.55(0.07-0.81) 0.64(0.29-0.9) 0.45(0.25-0.65) 0.45(0.10-0.64) >40 

TF/TB SF12 ratio 1.09(0.61-1.52) 1.47(0.53-2.39) 0.58(0.31-1.01) 0.97(0.51-1.73) 5-10 

AF/TF SF13 ratio 0.01(0-0.02) 0.00(0.00-0.01) 0.05(0.02-0.11) 0.01(0.00-0.01) >0.10 

AB/TB SF14 ratio 0.08(0.04-0.11) 0.09(0.03-0.13) 0.10(0.08-0.15) 0.07(0.07-0.08) >0.10 

AF/AB SF15 ratio 0.13(0-0.33) 0.17(0.00-0.68) 0.30(0.12-0.45) 0.07(0.00-0.17) 5-10 

  



 

Page 14 of 53 
 

Table 5. Linnaeus biological variables with labels used in this report. 

Name Label Unit BOP <15t/ha 
Average (min-

max) 

BOP >15t/ha 
Average (min-

max) 

MN 
Average (min-

max) 

FN 
Average (min-

max) 

Guide 

Actinomycetes LN01 mg/kg 2.9(1.1-5.4) 2.8(1.8-3.5) 2.5(2.0-3.0) 1.7(1.09-2.56) 1.0 

Ammonium (NH4) N Before 
Incubation 

LN02 mg/kg      

Ammonium (NH4) N to 
Nitrate NO3) N Conversion 

LN03 %/month      

Bacteria Stress Indicator LN04 Indicator 0.5(0.4-0.8) 0.5(0.4-0.6) 0.6(0.5-0.8) 0.46(0.40-
0.50) 

<0.5 

Carbon to Nitrogen Ratio LN05 Ratio      

Disease Resistance - MWSE 
only 

LN06 Indicator 88.8(79.9-
100) 

90.0(81.6-
100) 

88.1(80.5-
100) 

89.5(77.6-
100) 

70-100 

Drought Resistance - MWSE 
only 

LN07 Indicator 83.1(69.8-
100) 

85.0(72.4-
100) 

82.1(70.7-
100) 

86.0(74.9-
100) 

70-100 

Fungi to Bacteria Ratio LN08 Ratio 2.7(2.0-3.6) 2.9(2.5-3.6) 2.5(2.3-3.0) 3.4(2.9-4.5) 2.3 

Gram Negative Bacteria LN09 mg/kg 7.3(3.6-14.3) 7.5(4.4-8.8) 5.8(4.6-8.3) 4.88(2.83-
8.38) 

11.0 

Gram Positive Bacteria LN10 mg/kg 9.3(3.9-15.9) 9.1(6.0-11.7) 8.0(6.0-10.7) 6.8(4.9-9.8) 4.0 

Methane Oxidising Bacteria LN11 mg/kg      

Microbial Balance LN12 Indicator 84.4(73.3-
93.6) 

85.9(74.8-
91.3) 

80.7(72.3-
91.2) 

80.3(71.7-
90.7) 

70-100 

Microbial Diversity Indicator LN13 Indicator 35.9(32.8-
38.6) 

34.8(30.8-
37.9) 

37.3(36.2-
38.8) 

31.8(28.3-
34.2) 

80.0 

Mycorrhizal Fungi (AMF) LN14 mg/kg 7.0(4.0-13.6) 7.1(4.5-10.7) 8.0(4.1-17.8) 7.4(5.0-10.8) 10.0 

Nitrate (NO3) N Before 
Incubation 

LN15 mg/kg      

Nitrogen (N) Fixed LN16 mg/kg/mo
nth 

     

Nitrogen Mineralised - 
Estimated by Indices 

LN17 mg/kg/m
onth 

     

Nutrient Accessibility (VAM) 
- MWSE only 

LN18 Indicator 66.5(39.7-
100) 

70.0(44.8-
100) 

64.3(41.4-
100) 

71.9(49.9-
100) 

70-100 

Nutrient Cycling Rate - 
MWSE only 

LN19 Indicator 89.7(78.4-
100) 

91.1(80.0-
95.0) 

82.2(71.2-
93.9) 

85.2(80.1-
93.5) 

70-100 

Nutrient Solubilisation Rate 
- MWSE only 

LN20 Indicator 83.2(69.8-
100) 

85.0(72.4-
100) 

82.1(70.7-
100) 

84.3(66.4-
100) 

70-100 

Organic N (%) LN21 %      

Percentage of Total N 
Mineralised 

LN22 % of Total 
N/month 

     

Protozoa LN23 mg/kg 2.0(1.1-3.1) 2.2(1.4-2.9) 1.7(0.8-3.8) 1.65(1.3-1.9) 1.3 

Pseudomonas LN24 mg/kg 2.0(1.1-4.1) 2.2(1.1-3.0) 1.7(1.2-2.9) 1.4(0.83-2.34) 1.0 

Residue Breakdown Rate - 
MWSE only 

LN25 Indicator 98.8(90.4-
100) 

98.4(90.1-
100) 

94.4(89.7-
100) 

98.4(92.3-
100) 

70-100 

Sulphur Reducing Bacteria LN26 mg/kg      

Total Bacteria LN27 mg/kg 16.6(7.5-30.3) 16.5(10.3-
20.3) 

13.8(10.6-
19.0) 

11.6(7.7-18.1) 15.0 

Total Fungi LN28 mg/kg 44.0(27.3-
77.7) 

48.8(27.1-
72.2) 

35.7(26.9-
56.6) 

38.7(28.6-
60.8) 

33.8 

Total Microorganisms LN29 mg/kg 62.7(36.4-
108.9) 

67.5(38.8-
94.4) 

51.2(38.3-
79.4) 

52.0(40.4-
80.2) 

50 

Total Nitrogen (N) Before 
Incubation 

LN30 %      

Total Organic Carbon (C) 
Before Incubation 

LN31 %      

True Anaerobic Bacteria LN32 mg/kg 0.5(0.1-2.2) 0.5(0.3-0.8) 0.4(0.3-0.5) 0.2(0.1-0.3) <0.05 
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Table 6. Hill Laboratories soil variables with labels used in this report. The highlighted variable (HS13) is considered biological 
for this report; the remaining variables are nutrient levels and ratios. 

Name Label Unit BOP <15t/ha 
Average (min-max) 

BOP >15t/ha 
Average (min-max) 

MN 
Average (min-max) 

FN 
Average (min-max) 

pH HS01 pH  5.7(4.8-6.3) 5.7(5.1-6.2) 5.8(5.3-6.2) 6.2(6.1-6.4) 

Olsen Phosphorus HS02 mg/L 117(41-346) 108(42-213) 96(55-186) 47(24-75) 

Potassium HS03 MAF 16.5(10-33) 13(7-18) 21.2(14-29) 9(7-10) 

Calcium HS04 MAF 11.5(6-17) 12.7(8-17) 14.6(12-19) 9(5-14) 

Magnesium HS05 MAF 37.6(22-57) 36.7(22-67) 55.2(40-78) 31.6(18-44) 

Sodium HS06 MAF 3.3(2-9 3.4(2-6) 5(3-8) 8(6-10) 

Potentially Available 
Nitrogen (15cm 
Depth) 

HS07 kg/ha 129.2(85-159) 159.7(125-237) 230.6(204-253) 120.4(82-150) 

Anaerobically 
Mineralisable N 

HS08 µg/g 127.6(76-169) 163.8(120-286) 203.4(172-242) 80(51-101) 

Anaerobipcally 
Mineralisable 
N/Total N Ratio 

HS09 % 2.0(1.4-2.4) 2.2(1.7-2.8) 3.1(2.6-3.6) 2.2(1.8-2.7) 

Organic Matter HS10 % 12.7(8.6-15.7) 15.2(12.2-23) 12.8(11.7-14.9) 9.9(7.5-13.7) 

C/N Ratio HS11 --- 11.3(10.2-12.1) 12.0(10.4-13.1) 11.4(10.3-13.2) 16.7(12-24.7) 

Total Carbon HS12 % 7.4(5-9.1) 8.8(7.1-13.3) 7.4(6.8-8.6) 5.7(4.3-7.9) 

Total Nitrogen HS14 % 0.65(0.48-0.8) 0.73(0.55-1.02) 0.65(0.63-0.67) 0.35(0.25-0.43) 

Phosphorus (Mehlich 
3) 

HS15 mg/L 138(49-434) 142.3(69-244) 122.6(71-232) 154.6(67-309) 

Sulphur (Mehlich 3) HS16 mg/L 71(26-153) 57(25-98) 72(20-139) 42(29-61) 

Potassium (Mehlich 
3) 

HS17 mg/L 294(172-587) 230(125-303) 367(242-492) 151(119-176) 

Calcium (Mehlich 3) HS18 mg/L 1,845(933-2,680) 1,966(1,239-
2,740) 

2,094(1,806-
2,710) 

1,392(785-2,310) 

Magnesium (Mehlich 
3) 

HS19 mg/L 195.8(112.1-300) 190.9(103.8-321) 282.4(220-410) 171.5(96.1-247) 

Sodium (Mehlich 3) HS20 mg/L 16(10-43) 16(10-28) 23.8(13-37) 39(28-48) 

Iron (Mehlich 3) HS21 mg/L 74.5(52-156) 77.7(67-88) 108.2(97-132) 133(87-189) 

Manganese (Mehlich 
3) 

HS22 mg/L 20.7(10.1-34) 21.4(8.3-42.2) 79.5(55.7-98.1) 8.7(3.5-12.2) 

Zinc (Mehlich 3) HS23 mg/L 41.8(7.8-71.2) 51.8(17.4-81.8) 26.2(11.5-43.5) 34.4(5.7-117.8) 

Copper (Mehlich 3) HS24 mg/L 18.9(2.9-41.9) 32.6(18.3-55.1) 13.5(3.6-28.3) 15.2(0.3-54.2) 

Boron (Mehlich 3) HS25 mg/L 4.93(1.58-10.24) 6.78(1.98-11.65) 6.8(1.8-16.9) 2.17(1.24-4.52) 

Cobalt (Mehlich 3) HS26 mg/L <0.1(<0.1-<0.1) <0.1(<0.1-0.1) 0.2(0.1-0.4) <0.1(<0.1-<0.1) 

Aluminium (Mehlich 
3) 

HS27 mg/L 1,551(1,388-
1,704) 

1,496(1,379-
1,652) 

913(739-1,174) 1,609(1,441-
1,926) 

Total Copper HS28 mg/kg 103(27-193) 163(101-280) 87(43-142) 55(<4-158) 

Potassium HS29 me/100g 1.17(0.71-2.1) 0.97(0.45-1.31) 1.37(0.85-1.91) 0.41(0.36-0.46) 

Calcium HS30 me/100g 13.8(5.9-21.2) 15.4(8.7-21.2) 15.5(12.1-19.6) 6.7(3.4-11.3) 

Magnesium HS31 me/100g 2.47(1.45-3.95) 2.46(1.38-4.38) 3.22(2.2-4.44) 1.41(0.74-2.03) 

Sodium HS32 me/100g 0.1(0.06-0.27) 0.10(0.06-0.18) 0.14(0.08-0.22) 0.17(0.12-0.21) 

Potassium HS33 %BS 3.9(2.6-7.9) 2.95(2.2-3.6) 1.3(3-6) 3.3(2.3-4.4) 

Calcium HS34 %BS 45(23-59) 47(38-59) 48(38-59) 50.6(37-64) 

Magnesium HS35 %BS 8.0(4.8-11.1) 7.5(4.6-11.9) 10.1(7-13.5) 10.7(8-12.9) 

Sodium HS36 %BS 0.3(0.2-0.9) 0.3(0.2-0.6) 0.5(0.3-0.7) 1.4(0.8-2) 

CEC HS37 me/100g 31(23-45) 33(21-46) 32(28-35) 13(9-18) 

Total Base Saturation HS38 % 57(38-74) 58(45-71) 63(50-77) 66(51-79) 

Volume Weight HS39 g/mL 0.68(0.62-0.79) 0.67(0.55-0.73) 0.76(0.69-0.8) 1.01(0.97-1.07) 

       

Hot Water 
Extractable Carbon 

HS13 mg/kg 1,560(882-2,422) 1,892(1,331-
2,887) 

1,840(1,124-
2,496) 

942(747-1,240) 
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Table 7. Hill laboratories leaf tissues soil variables. 

Name Units BOP <15t/ha 
Average (min-max) 

BOP >15t/ha 
Average (min-max) 

MN 
Average (min-max) 

FN 
Average (min-max) 

Nitrogen % 2.2(1.8-2.6) 2.2(1.8-3) 2.4(2.3-2.6) 2.5(2.1-2.7) 

Phosphorus % 0.11(0.08-0.15) 0.12(0.1-0.18) 0.15(0.12-0.16) 0.15(0.11-0.19) 

Potassium % 1.1(0.7-1.3) 1.0(0.9-1.2) 1.2(1.0-1.4) 1.0(0.8-1.1) 

Sulphur % 0.26(0.2-0.32) 0.30(0.25-0.38) 0.31(0.27-0.41) 0.29(0.23-0.36) 

Calcium % 2.05(1.62-2.65) 2.40(2.03-2.92) 2.23(1.56-2.83) 1.50(1.28-1.75) 

Magnesium % 0.38(0.31-0.47) 0.43(0.35-0.56) 0.48(0.37-0.53) 0.47(0.43-0.56) 

Sodium % 0.003(0.002-0.005) 0.005(0.003-0.008) 0.004(0.003-0.006) 0.007(0.005-0.01) 

Iron mg/kg 48(36-62) 54(38-83) 57(48-66) 49(41-65) 

Manganese mg/kg 209(71-630) 163(84-240) 330(220-570) 68(22-104) 

Zinc mg/kg 39(27-55) 43(35-51) 36(21-53) 38(21-59) 

Copper mg/kg 206(32-910) 126(32-197) 232(9-590) 129(6-230) 

Boron mg/kg 35(20-48) 31(21-35) 37(20-48) 53(32-79) 

Chloride % 0.17(0.07-0.24) 0.20(0.09-0.34) 0.15(0.09-0.21) 0.24(0.18-0.39) 

 

3.2 Statistical analysis 

3.2.1 Benchmarking of the variables between biological soil tests. 
 
The Soil Foodweb, Linnaeus and Hill Laboratories soil biological tests use different methodologies to 
measure soil biological variables. Soil Foodweb use microscopy-based observations and counts to 
quantify different microbial populations; Linnaeus uses molecular markers to quantify the amounts of 
different microbial species, and the Hill Laboratories Hot Water Extractable Carbon test quantifies the 
labile fraction of soil carbon that has been shown to correlate with soil microbial biomass and is 
sensitive to changes in soil quality. While the Hill's Hot Water Extractable Carbon test provides a single 
value as a measure of the total microbial biomass in the soil, some of the variables are shared between 
the Soil Foodweb and Linnaeus tests. A comparison between these shared variables was undertaken to 
see if growers may be able to use these tests interchangeably. The two common and comparable 
variables were Total fungi and Total bacteria, where the values of Soil Foodweb were on average 9 and 
25 times higher than Linnaeus, respectively. The ranges or thresholds for a "good" level were also 
different (see Table 8). Since both laboratories use different techniques, some variances were expected, 
but the variances were not proportional to each other. For instance, the Linnaeus result for orchard 
BOP-3 indicated a good level of Total fungi while Soil Foodweb results indicated low levels, and BOP – 
14 had the highest value for the Soil Foodweb Total fungi test but one of the lowest for the Linnaeus 
test. 
 
Table 8. Compare results from Soil Foodweb and Linnaeus for the 29 orchards in the only two common variables. 

 
Lab Name Units Average 

(min-max) 
High yield 

Average 
(min-max) 

Lower yield 

Target 

SFW Total fungi mg/kg 328(137-911) 384(205-513) >1500 

Linnaeus Total fungi mg/kg 41.5(26.9-72.2) 44.0(27.3-77.7) 34 

SFW Total bacteria mg/kg 330(237-565) 362(245-483) >300 

Linnaeus Total bacteria mg/kg 14.2(7.7-20.3) 16.6(7.5-30.3) 15 
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Figure 5 and Figure 6 show Total fungi and Total bacteria values for Soil Foodweb (SFW) and Linnaeus. 
The subsamples send to the laboratories came from the same original homogeneous sample taken from 
the orchard. 
 

 
Figure 5.Values of Total fungi quantified by Soil Foodweb (SFW) and Linnaeus. 

 
 

 
Figure 6. Values of Total bacteria quantified by Soil Foodweb (SFW) and Linnaeus. 
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Both laboratories also quantified mycorrhizae and actinomycetes. However, Soil Foodweb provides a 
percentage of mycorrhizae colonisation while Linnaeus reports mycorrhizae biomass in mg/kg; 
therefore, a comparison was not possible. Soil Foodweb did not detect actinomycetes in any of the soil 
samples (0 mg/kg in all samples); in contrast, Linnaeus provided a range from 1.1 to 5.4 mg/kg. 
 

3.2.2 Yield predictability by individual leaf and fruit variables 
 
Linear regression was also carried out to look for trends in nutrient concentration in leaf and fruit 
samples with orchard yield but poor correlations was observed (R2= 0.005-0.04, leaf macronutrients). 
Table 9 summarises all the nutrient values. All the charts are available in Appendix 5.5.   
 
Table 9. Summary of all R-square values of linear regression of selected nutrient averages between the low and high yield 
classification in the different plant tissues tested. 

Plant tissue Name Label Units Average 
(min-max) 
High yield 

Average 
(min-max) 

Lower yield 

R-square 

Flesh Nitrogen HST1 g/100g 1.28(0.22-1.88) 1.4(0.86-1.96) 0.11285 

Flesh Potassium HST2 g/kg 15.6(12.2-19.9) 14.(11.4-16.9) 0.00360 

Flesh Phosphorous HST3 g/kg 1.71(1.44-2.00) 1.56(1.05-1.82) 0.07482 

Flesh Boron HST4 mg/kg 115(46-186) 99(52-147) 0.00008 

Flesh Calcium HST5 mg/kg 926(550-1340) 1051(210-1450) 0.00368 

Skin Nitrogen HST6 g/100g 0.98(0.85-1.18) 1.02(0.85-1.25) 0.05349 

Skin Potassium HST7 g/kg 10.7(8.8-12.7) 11.7(9.3-21.0) 0.09077 

Skin Phosphorous HST8 mg/kg 914(820-1050) 976(790-1330) 0.09477 

Skin Boron HST9 mg/kg 59(30-99) 57(33-130) 0.02492 

Skin Calcium HST10 mg/kg 1141(790-1750) 1379(610-2100) 0.06928 

Leaves Nitrogen HST11 % 2.4(1.8-3.0) 2.2(1.8-2.6) 0.04173 

Leaves Potassium HST12 % 1.1(0.8-1.4) 1.1(0.7-1.3) 0.03016 

Leaves Phosphorous HST13 % 0.14(0.1-0.19) 0.11(0.08-0.15) 0.05180 

Leaves Boron HST14 mg/kg 39.8(20-79) 35.3(20-48) 0.00713 

Leaves Calcium HST15 % 2.06(1.28-2.92) 2.05(1.62-2.65) 0.00581 

 

3.2.3 Yield predictability by individual soil variables 
 
Statistically significant differences were detected in some of the soil chemical and physical variables 
measured. HS09 (Anaerobically Mineralisable N/Total N Ratio) and HS11 (C/N Ratio) were both higher 
for orchards in the high yielding classification, but ranges of values in each overlapped (both p-values = 
0.03). Earthworm counts were also significantly different with lower counts from the high yielding 
orchard group. There was no statistically significant variable across all the other chemical, biological, 
and physical soil variables measured (p-values > 0.05). A full table of results is listed in Appendix 5.6. 
 
The number of orchards in the Bay of Plenty were considerably higher than the other two regions, and 
all low yielding orchards were located in the Bay of Plenty. Statistical analysis of a regional effect was 
not undertaken due to data limitations (i.e. small sample size and absence of low yielding orchards in 
the Mid and Far North). 
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3.2.4 Inter-correlation among variables and multivariate analysis 
 
Some intercorrelation of variables was seen within the reports from the different laboratories. If many 
different variables are correlated with each other, it may be possible to exclude some to save on testing 
costs while using other variables as proxies for the correlated variable. Intercorrelated variables are 
also less likely to help explain variability in yield across orchards beyond what one of these variables 
can indicate. Statistical analysis was undertaken to identify the potential correlation and combination 
of variables that predict yield.  
Linnaeus variables had the highest intercorrelation, as indicated by the more clustered points on the 
Biplot (Figure 7). Conversely, the intercorrelation among the Hill Laboratories soil nutrient and Soil 
Foodweb variables were comparatively lower (Figure7). 
 

 
Figure 7. Biplots of first and second Principal Components of Linnaeus and Soil Foodweb biological and Hill soil nutrient variables 
for all orchards. The scatter dots are approximate locations of the data points (orchards) in the PC coordinate system. 
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Figure 8. Projection of high and low yielding orchards on the first and second principal components of Linnaeus and Soil Food 
Web biological, and Hill soil nutrient variables. All variables were normalised before projection. 

The variables from each test did not correlate particularly well with the high and low yield 
classifications. A strong correlation between the variables and the low and high yielding orchard class 
would be observed by clear clusters of high yielding and low yielding orchards in the panels of Figure 8. 
The panels show considerable overlap between the two classes in all datasets, indicating that each test 
does not correlate well with the high and low yield classes. No set of variables predicted orchard yield 
with 95% confidence.  
 

3.3 Machine learning 

3.3.1 Classification trees (yield predictability by sets of variables) 
 
Machine learning was undertaken to identify any potential predictors and combinations of predictors 
for low and high yielding orchards. The algorithm was run 100 times on 24 orchard results and then 
tested against the remaining five orchards in the data set to check accuracy.  Importance estimates 
identified variables that were predictors of yields, and classification trees were developed as a potential 
decision-making tool for growers to try to identify thresholds for the important variables influencing 
yield.  
 

3.3.1.1 Soil Foodweb 
 
Ten Soil Foodweb biological variables were considered as predictors for classifying between high and 
low yielding orchards. From the 100 iterations of the decision trees generated with data from 24 
orchards, the maximum classification accuracy on the remaining five orchards was 76% by the Soil 
Foodweb variables. 
 
Ciliates (SF10) was the most important variable in predicting yield, followed by Total fungi (SF06), 
Flagellates (SF08), Dry weight (SF01) and Total bacteria (SF03) (Figure 6 and Appendix 5.7.15.6). It was 
observed that high yielding orchards tended to have higher levels of ciliates, higher dry weight and 
lower levels of total bacteria compared to the low performing orchards.  
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The importance of each variable in classifying whether an orchard is high or low yielding is shown in 
Figure 9.  
 
Appendix 5.8.1 shows one of the 100 decision trees tested as part of the machine learning process that 
helps to define what variables are important and what thresholds may be relevant. Unfortunately, 
thresholds could not be defined with any level of confidence that incorporated all the important 
variables identified.  
 

 
Figure 9. Importance estimate of Soil Foodweb biological variables in classifying between low and high yielding orchards. The 
higher the 'predictor importance estimate' (y-axis), the better the variable is at predicting yield. 
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3.3.1.2 Linnaeus laboratories 
 
Twenty Linnaeus biological variables were considered as predictors for classifying between high and 
low yielding orchards. From the 100 iterations of the decision trees generated with data from 24 
orchards, the average classification accuracy on the remaining five orchards was 62% by the Linnaeus 
variables. 
 
Gram-negative bacteria (LN09) was the most important variable in classification between high and low 
yielding orchards, with high yielding orchards having lower gram-negative bacteria counts. (Figure 10 
and Appendix 5.7.2). The importance metric of the other variables was either negative or close to zero.  
 
Appendix 5.8.2 shows one of the 100 decision trees tested as part of the machine learning process that 
helps to define what variables are important and what thresholds may be relevant. Unfortunately, 
thresholds could not be defined with any level of confidence that incorporated all the important 
variables identified.   
 

 
Figure 10. Importance estimate of Linnaeus variables in classifying between high and low yielding soils. The higher the 'predictor 
importance estimate' (y-axis), the better the variable is at predicting yield. 

 

3.3.1.3 Hill Laboratories 
 
38 Hill Laboratories soil nutrient variables1 were considered as predictors for classifying between high 
and low yielding orchards. From the 100 iterations of the decision trees generated with data from 24 
orchards, the maximum classification accuracy on the remaining five orchards was 76% by the Hill 
Laboratories variables. 
 
Iron-Mehlich 3 (HS21), followed by Aluminium-Mehlich 3 (HS27) and C/N ratio (HS11), were the most 
important variables in classification between the high and low yielding orchards (Figure 11 and 

                                                           
1 HWEC (HS13) was not include in this set of variable because is biological variable and was analysed. The 
univariate analysis showed no significant difference between high and low yielding orchards (p-value 0.22). 
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Appendix 5.7.3 Results showed that high yielding orchards had higher Iron-Mehlich 3 and C/N ratio 
levels and lower levels of Aluminium-Mehlich 3. 
 
Appendix 5.8.3 shows one of 100 decision trees tested as part of the machine learning process that 
helps to define what variables are important and what thresholds may be relevant. Unfortunately, 
thresholds could not be defined with any level of confidence that incorporated all the important 
variables identified. 
 

 
Figure 11. Importance estimate of Hill nutrient variables in classifying between high and low yielding soils. The higher the 
'predictor importance estimate' (y-axis), the better the variable is at predicting yield. 

 

3.3.1.4 Combination of Soil Foodweb and Hill Laboratories Soil Nutrients 
 
49 Hill Laboratories nutrient and Soil Foodweb variables were analysed as predictors for classifying high 
and low yielding orchards. From the 100 iterations of the decision trees generated with data from 24 
orchards, the maximum classification accuracy on the remaining five orchards was 79% using the 
combined Hill Laboratories and Soil Foodweb. Slightly higher than the 76% accuracy each set of 
variables achieved on their own.  
 
The important variables selected in the analysis of Soil Foodweb and Hill Laboratories variables had 
relatively high importance when combined (Figure 12 and Appendix 5.7.4). However, the Hill 
Laboratories soil nutrient variables had stronger importance in classification than the Soil Foodweb 
variables. One example decision tree showed that classification based on Iron-Mehlich 3 (HS21) could 
provide 67% accuracy without any biological variables. 
 
Appendix 5.8.4 shows one of the 100 decision trees tested as part of the machine learning process that 
helps to define what variables are important and what thresholds may be relevant.  
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Figure 12. Importance estimate of Hill Laboratories nutrient variables combined with Soil Foodweb biological variables in 
classifying between high and low yielding soils by Random Forest. The metric for importance was the average OOB Delta error 
over 100 ensembles. 
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4 Conclusion and discussion 

Key variables relating to soil physical, biological and chemical composition were successfully collected 
from groups of high performing orchards in the three main avocado producing regions of New Zealand 
and lower yielding orchards in the Bay of Plenty region. The information collected in this study will 
provide a valuable comparison across the different tests for avocado growers to compare their own soil 
test results to. Aspects of soil physical, biological and chemical composition all showed importance in 
classifying whether an orchard was high yielding or not. Some of the correlations observed are contrary 
to what is expected to contribute to a high performing soil. Caution is needed when interpreting these 
observations as management and environment also influence yield, and these variables were not 
captured in this study. It may be that there are common management practices among high performing 
orchards that negatively affect soil characteristics. Therefore, the correlations seen within the soil 
variables may be more related to management practices rather than the high yields common to these 
orchards. Further investigation may reveal that changes to management practices to enhance soil 
conditions may further enhance yields beyond what these already successful orchards are currently 
achieving.  The machine learning approach taken when analysing the data means additional data can 
be added as it becomes available and the analysis re-run to improve the predictive model accuracy in 
identifying important variables. 
 
Common variables within the commercial biological tests investigated showed poor correlation with 
each other. This suggests that biological tests should not be used interchangeably if a time series of 
data is desired. Further investigation is needed into the repeatability of results from these tests to 
ensure they are reliable and provide similar results for growers. Since only two tests were compared, 
at a single time point, it was impossible to identify which one was the most accurate. There may be 
possible improvements to sampling, sample handling and processing that could be highlighted from 
further investigation to improve consistency between the tests.  
 
There was little variation in the soil physical variables scores across the orchards in this study. A wider 
selection of orchards may capture a wider range of soil properties and highlight the importance of soil 
physical properties with yield to a greater extent than seen in this study. 
 
Although the leaf and fruit nutrient results show little correlation with yield in this study, greater 
correlation may be seen to fruit quality fruit quality. As more data is collected across the physical, 
biological and chemical composition (nutrients) of soils of avocado orchards, key variables and ideal 
ranges for these key variables will likely become clearer. Increasing the range of yields to include more 
lower yielding orchards would increase the statistical power and may better highlight correlations 
between variables and orchard yield.  
 
Each of the variables identified as important in classifying an orchard as high or lower yielding are 
summarised and discussed below. 
 

4.1 Soil chemistry (nutrition) 

Soil chemical variables had the greatest importance when classifying orchard yield performance. This is 
not surprising as many of the benefits of good soil physical and biological properties are related to 
nutrient availability and enhanced uptake, and therefore, are likely secondary to the actual nutrient 
content of the soil. 
 
Iron (Mehlich 3) and Aluminium (Mehlich 3) were identified as chief predictors when the Hill 
Laboratories and Soil Foodweb variables were combined. The table below is a summary of the Hill 
nutrient variables across the two yield classifications.  
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Table 10. The nutritional variables with the high importance estimate that were highlighted with machine learning analysis.  

Sample type Name Label Units Average 
(min-max) 
High yield 

Average 
(min-max) 

Lower yield 

Soil Iron (Mehlich 3) HS21 mg/L 105(67-189) 75(52-156.0) 

Soil Aluminium (Mehlich 3) HS27 mg/L 1349(739-1926) 1551(1338-1704) 

Soil C/N ratio HS11  13.3(10.3-24.7) 11.3(10.2-12.1) 

 
Iron (Mehlich 3): Higher iron levels (Mehlich 3) correlated with higher yielding orchards. The high and 
lower yielding orchards had 105 mg/l and 75 mg/l of iron on average, respectively. The range used by 
industry consultants is from 40-400 ppm of iron - Mehlich 3 (NZ Avocado Growers' Association Inc., 
2018) and all orchards results were well within this range. For this reason, it appears unusual that the 
small average difference seen in this study is a predictor for yield. Iron is not a nutrient that is deemed 
difficult to manage in New Zealand; therefore, this result warrants further investigation. Iron is a 
structural component of enzymes in electron transport chains and is required to synthesise chlorophyll 
(Lovatt, 2015). Both of these are essential processes for the tree.  
 
Aluminium (Mehlich 3): Lower aluminium levels (Mehlich 3) correlated with high yielding orchards. High 
and low yielding orchards had on average 1349 mg/l and 1551 mg/l, respectively. Aluminium toxicity 
can become a problem but only at soil pH below 5.5. The average soil pH for lower yielding orchards 
was 5.7 with a range of 4.8 to 6.3, and higher yielding orchards had an average of 5.9 with a range of 
5.1 to 6.2. High yielding orchards had two orchards with soil pH below 5.5, and three lower yielding 
orchards had three. Soil pH may also be contributing to this correlation of lower Aluminium levels in 
higher yielding orchards. 
 
Carbon/Nitrogen (C/N) ratio: The average C/N ratio for high yielding orchards in this study in the Bay of 
Plenty was 12.0, whereas the average for low yielding orchards was 11.3. This ratio is the quotient 
between the percentage of organic carbon and total nitrogen. It is related to mineralisable nitrogen as 
it relates to the availability of nitrogen to the tree. A C/N ratio greater than 35 results in microbial 
immobilisation of nitrogen as the microbes scavenge nitrogen from the soil to utilise the carbon that is 
available via respiration (microorganisms release carbon dioxide). This means nitrogen is not available 
to the plant. When the C/N ratio is below 25, soil microbes generate mineralised nitrogen that is 
available for the plant (McLaren and Cameron n.d.). Once C/N ratios are between 1 and 15, nitrogen is 
rapidly mineralised. These results indicate that the nitrogen that is in the soil had a high availability to 
the plant and little chance of nitrogen draw down by microbes scavenging nitrogen from the soil. This 
ratio should be interpreted in context with total organic carbon and total nitrogen. The difference 
between the two groups classification is minimal, but a larger sample size with a broader yield range 
along with broader C/N ratios may be helpful to identify an ideal ratio in different regional soils. Ideal 
mulch for avocado has C/N ratios of between 25 and 100 to ensure some carbon residues are retained 
to protect the soil from sun and provide an environment for the roots to grow. The average organic 
matter of soils tested were 13.5, 12.8 and 9.9 for the Bay of Plenty, Mid North and the Far North, 
respectively. The orchards that fit into the higher yielding classification in the Bay of Plenty had an 
organic matter value of 15.2 compared to 12.7 for the lower yielding orchards.  
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4.2 Soil biology 

 
Soil biological variables were also able to classify orchard performance with a reasonably high degree 
of accuracy. The table below is a summary of the important predictive results. 
 
Table 11. The biological variable with the high importance estimates that come up from machine learning analysis. The range 
is a threshold for good levels provided by the laboratories. 

Lab Name Label Units Average 
(min-max) 
High yield 

Average 
(min-max) 

Lower yield 

Target 

SFW Dry weight SF01 -- 0.67(0.50-0.85) 0.61(0.57-0.68) 0.45-0.85 

SFW Total bacteria (TB) SF03 mg/kg 330(237-535) 362(245-483) >300 

SFW Total fungi (TF) SF06 mg/kg 328(137-911) 384(205-513) >1500 

SFW  Flagellates SF08 number/g 11,182(782-44,249) 17,276(2038-55,500) >5000 

SFW Ciliates SF10 number/g 366(38-836) 177(43-472) <334 

Linnaeus Gram negative bacteria LN09 mg/kg 6(3-9) 7(4-14) 11 

 
Ciliates (SF10) and Flagellate (SF08): Protozoans play a role in nutrient cycling and have some predatory 
behaviours that control the size and composition of microbial communities.  Flagellates and amoeba 
are desired in high numbers as they work aerobically to digest bacteria and make their nutrients 
available to the plant. However, ciliates feed on anaerobic bacteria and are more tolerant of anaerobic 
environments meaning high levels of ciliates can indicate a compact of water logged soil. Higher levels 
of ciliates were found on high yielding orchards compared to lower yielding orchards, which is not the 
expected association. Studies have shown higher ciliate abundance correlates with higher soil moisture, 
organic matter, available nitrogen, phosphorous, copper, zinc, nickel and total microbial biomass 
(Acosta-Mercado and Lynn 2004; Luu 2019). The cause of the higher ciliate counts from the higher 
yielding orchards warrants further investigation but may be related to recent rain conditions or other 
soil conditions that favour ciliates. Higher counts of flagellates were seen on the lower yielding 
orchards, but both the higher yielding and lower yielding orchards had average counts well above the 
targets. High levels of flagellates are not assumed to be negative as they play a key role in making 
nutrients available to trees. 
 
Dry weight (SF01): High yielding orchards had high dry weight compared to low yielding orchards, 
correlating with the higher organic matter seen on higher yielding orchards. Both high and lower 
yielding orchard levels were within normal range, according to the Soil Foodweb range (see Table 11). 
These results could be quite variable depending on sampling conditions as rain and irrigation will likely 
influence the result.  
 
Total bacteria (SF03): High yielding orchards had low levels of total bacteria. In both cases, the level was 
above the target range, according to the Soil Foodweb range, indicating that probably soils were high 
in simple carbon forms from root exudates and fresh plant litter. Avocado trees generally have a lot of 
litter under the dripline; therefore, the high levels seen may be indicative of this environment. Why 
higher yielding orchards may have lower levels of bacteria is unclear but the higher protozoa levels in 
the form of ciliates may relate to this. 
 
Gram negative (LN09): High yielding orchards had lower levels of gram-negative bacteria compared to 
the low yielding orchards, but both are below good levels, according to Linnaeus range, of microbial 
biomass (see Table 11). Some gram-negative bacteria are associated with nitrogen fixation but this 
requires an association with the root system that does not occur with avocado. This group may have 
other positive microbial roles in agriculture as some members produce plant growth hormones, fight 
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pathogens, or make nutrients available for plants such as some Pseudomonas spp, Azotobacter spp. 
and nitrosomas. Therefore, it is not clear why lower levels of gram negative bacteria might be 
associated with higher yielding orchards. 
 
A Comparison of Soil Foodweb and Linnaeus variables of the same description showed little correlation 
for Total bacteria and Total fungi. This suggests that the tests should not be used interchangeably and 
using the same test over time will be the best way to track changes in soil biology.  
 
Hill Laboratories Hot Water Extractable Carbon is a biological measure of soil health. A single variable 
was not a strong predictor of orchard yield classification in this study and so was not analysed 
separately. Other studies have been proven to be closely correlated with soil biomass and so would still 
offer a reasonable measure of soil biology over time (Ghani, Dexter, and Perrott, 2003). It was the 
cheapest biological method used in this study and would be an effective tool to monitor soil biology 
over time to understand degradation or enhancement. It does not differentiate between fungi and 
bacteria; therefore, it may be difficult to understand how best to influence the biology of the soil from 
this test alone. 
 

4.3 Soil physical properties (Visual soil assessment) 

 
Worm count was the only statistically significant variable in visual soil assessments that acted as a 
predictor of orchard yield in this study. Soil physical properties such as compaction and poor structure 
are known to impact avocado tree health negatively, so it was unexpected not to identify some more 
of these issues in the lower yielding orchards. If a larger number of orchards were investigated, these 
physical limitations may be encountered more, resulting in more variable physical soil assessment 
scores. This in turn would give a more accurate assessment of the importance of these parameters on 
orchard yield. However, it is encouraging to see from orchards in this project that soil physical 
properties are unlikely to be limiting yields. All 29 orchards included in this study had a soil quality index 
of over 28 points. According to visual soil assessment methodology (Shepherd, 2019), all orchards were 
in the top soil quality category.  
 
Table 12. The total number of earthworm counts. Four holes on the different cardinal points of the tree were taken so counts 
are from a total of 60 cm2 of soil. 

Name Unit BOP <15t/ha 
Average (min-max) 

BOP >15t/ha 
Average (min-max) 

MN 
Average (min-max) 

FN 
Average (min-max) 

Earthworms count 15.2(0-48) 7.5(1-18) 17.2(1-53) 10.6(0-41) 

 
Earthworm count: Although earthworms are a biological variable, they were included under the visual 
soil assessment methodology. All sampled orchards had scored zero for the earthworms count under 
the scoring system used because the average of the four reps (200 mm cube of soil each) was below 
15 earthworms. The total sum of earthworms in the four reps was significantly correlated with orchard 
yield, where orchards with lower earthworms total count had higher yields. This was an unexpected 
result as earthworms have a beneficial role. The lower counts on higher producing orchards may be 
related to other cultural practices common amount the more successful orchards and warrants further 
investigation.   
 

4.4 Leaf and fruit nutrients 

Leaf nutrient testing is a common method to check the nutrient status of a tree and identify any 
deficiencies that may be limiting production. While no correlation was seen in this study between leaf 
nutrient levels and yield, the published nutrient ranges of high producing orchards will still be 
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informative to growers. The impact of other environmental and management practices on yield suggest 
higher sample numbers are needed to elucidate the impact of nutrients. A correlative study in the 
Western Bay of Plenty across over a hundred orchards showed different averages between the yield 
classes stepping up in 5t/ha increments from 0 to >30t/ha but overlapping ranges between the lowest 
and highest groups (Dixon, 2008). A Californian study that used novel data analysis to refine leaf 
nutrient targets and fertiliser application utilised over 3500 observations for the analysis (Crowley 
2016).  
 

4.5 Potential future work 

4.5.1 Understanding how soil variables, as well as leaf and fruit nutrient concentrations, 

influence fruit rots 
 
17 of the orchards used in this study are also part of the Avovantage project looking to understand the 
on-orchard factors that contribute to avocado fruit rots. Nutrition has always been associated with fruit 
rot potential with the nitrogen to calcium ratio of the fruit of particular interest. Data from this study 
will be incorporated into the Avovantage project to look for correlations between soil, leaf and fruit 
properties with fruit rot potential. 
 

4.5.2 Potential partnership with commercial soil biology and nutrient testing laboratories 
 
Both soil nutrients and biological variables acted as predictors of orchard yield in this study. Some of 
the correlations observed were contrary to the current understanding of what makes a 'good' soil. 
Increasing the number of orchards involved in the analysis would help build confidence in the results 
of this study or identify alternative predictor variables. By partnering with growers and the commercial 
laboratories providing the testing services, additional data points could be obtained to re-run this 
analysis with ever increasing sample size. Running across multiple years would also account for seasonal 
fluctuations that may influence results. 
 

4.5.3 Incorporate additional management and environmental variables into the analysis to 

identify the relative importance 
 
Machine learning allows multiple variables to be analysed collectively and a hierarchy of importance to 
be built. By capturing additional management and environmental data, it should be possible to 
understand better the relevance of soil composition variables in the context of management and 
environmental influences (e.g. is a $10,000 investment in a compost application going to have more or 
less influence on yield than $10,000 spent on extending an irrigation system). 
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5 Appendix 

5.1 Sampling collection 

5.1.1 Soil samples collection  

i. Divide the area under the tree drip lines into four quadrants. 

ii. Choose two sample sites in NW and SE quadrants and take pictures from the tree tag 
and quadrants starting with the NW. 

iii. Choose and spot halfway between the tree trunk and the dripline edge (in the rooting 
zone) and screenshot GPS coordinates. 

iv. Remove any vegetation or any other element (e.g. mulch) from the top of the sample 
sites. 

v. Use the auger to take the profiles through the top 15cm, starting with the NW and 
then SE. 

vi. Place the two cores in the bucket. 

vii. Move to the following tree 

viii. Once all the cores have been taken, mix the sample in a clean bucket. 

ix. Label them and place into the cooler box with the ice pack. 
 

5.1.2 Leaf sample collection 

i. Identify shoots that are not flushing nor fruiting. 

ii. Take 4 to 8 random leaves of the youngest mature leaf (blade plus petiole) at 
shoulder height. 

iii. Ensure leaves from each tree are taken evenly from the sunny and shaded sides. 

iv. Do not mix cultivars or trees of different ages in the samples. 

v. Label the sample and place it into the cooler box with the ice pack. 
 

5.1.3 Fruit sample collection 

i. Sample one fruit per tree. If there is no fruit in the pre-selected trees, then take fruit 
from the nearby trees in the same block, and note that.  

ii. Placed directly into the sampling bag with minimum hand contact.  

iii. Label the sample and place it into the chilli box with the ice pack 
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5.2 Sampling delivery 

 
To ensure the integrity of the samples, Fridays were avoided, and samples were sent on Thursdays to 
reduce the chance that they spent the weekend in the courier storage. Hill laboratory provide bags for 
their samples. The other samples were packed in re-sealable zipped bags. Table 13 summarises the 
sample amount and consideration that every laboratory require. 
 
Table 13. The total sample size and storage requirements per laboratory. 

Type Laboratory Minimum sample size Storage 

Soil Hill Laboratory 600 g Samples were held in a refrigerator overnight (5 °C), then 
couriered to the lab. 

Soil Linnaeus 400 g All samples were frozen (-18°C) for at least 24 hours, wrapped 
in a freezer bag and courier to the lab. 

Soil Soil Food Web 400 g Samples were held in a refrigerator overnight (5 °C), then 
couriered to the lab. 

Leaf Hill Laboratory 20-40 leaves Samples were held in a refrigerator overnight (5 °C), then 
couriered to the lab. 

Fruit Hill Laboratory 10 pieces of fruit Samples were held in a refrigerator overnight (5 °C), then 
couriered to the lab wrapped in bubble wrap. 
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5.3 Visuals soil assessment 

5.3.1 Special considerations 
 
The VSA was performed following the instructions in the book Visual Soil Assessment, Vol 1 by Graham 
Shepherd Assessment and posterior errata and addenda o the book. Additionally, the following 
considerations were included:  
 

 Earthworm number is the most variable visual indicator; therefore, four earthworm 
replications per VSA (12 replications per orchard/block) were done under the advice of Graham 
Shepherd. 

 Soil texture was determined utilising the guidance "Determining soil texture" by Irrigation New 
Zealand since this procedure is well-known by growers. This document is available on: 
https://www.irrigationnz.co.nz/news-resources/irrigation-resources/soil-texture-
water/Attachment?Action=Download&Attachment_id=104 

 Potential rooting depth the maximum deep of the hole was restricted to 1 meter because 
digging a hole more than one-meter depth was considered unpractical and time-consuming. 
According to that, the criteria for unirrigated orchards were scored in the same fashion that 
irrigated orchards. 

 Surface ponding - orchards were assessed according to time availability and not always after 
significant rain; therefore, this indicator was scored based on growers' feedback or our know-
how. 
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5.3.2 VSA Scorecard  
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5.4 Statistical analysis description 

5.4.1 Yield predictability by individual variables (Univariate analysis) 
 
Linear Mixed Model (LMM) was employed to investigate the difference in every single soil variable 
measured by the laboratories or visually assessed, except the earthworm. That is because all other 
variables have normal or lognormal distributions except earthworms that had Poisson distribution. 
 
The fixed effect was the binary classification of high/low yielding, and the block effect was the region. 
The model assumptions were checked for each variable prior to fit, and the F-test was used to report 
on the statistical significance of the fixed effect. The predicted means and 95% confidence intervals 
were reported. 
 
Generalised Linear Mixed Model (GLMM) was employed to investigate the difference in earthworm 
counts between the binary classifications of high/low yielding orchards. The fixed effect was the binary 
classification, and the random effect was the region. The model was fit by Poisson distribution at log 
scale. Wald test was used to investigate the statistical significance of the fixed effect, and the back-
transform means and confidence intervals were reported. 
 
The computations were performed by the Statistics and Machine Learning toolbox, MATLAB 2020b. 
 

5.4.2 Inter-correlation among variables (Multivariate analysis) 
 
Degrees of inter-correlation or inter-dependencies were expected among three groups of variables: 
The 15 biological variables measured by Soil Food Web, the 32 biological variables measured by 
Linnaeus and 38 soil nutrient variables measured by Hill. This expectation was because these three 
groups of variables were collected from the same soils samples and belonged to the same category 
(biological or chemical). Strong inter-correlation among each group of variables would potentially 
impact the overall relationship between the variables and the binary classifications of high 
performing/low yielding orchards. If there were a strong (or weak) correlation between a particular 
variable and the binary classifications, a similar relationship would have been expected between all 
other variables that are strongly correlated with the particular variable and the binary classifications. 
 
Principal Component Analysis (PCA) was used to investigate inter-correlation among the three groups, 
and each group was analysed independently from the other two. PCA is a geometric transformation 
that transforms the n-dimensional matrix of correlated variables to another n-dimensional matrix 
whose columns are uncorrelated. Here, the dimension of the matrices was 15, 32 and 38 variables by 
29 orchards for SFW, Linnaeus and Hill soil nutrients accordingly. PCA transformed these matrices into 
matrices of the same dimension. The transformed dimensions no longer represent every single 
measured variable but contain overall information about the variables mean, variance and higher 
orders statistics. The transformed dimensions are called the Principal Components (PCs). 
 
Typically, we would expect the PCs to be negligible from PC4 onwards. In other words, PCA transforms 
a high dimensional matrix of correlated variables into a low dimensional matrix of PCs (typically 3 
dimensional) as the PCs are negligible for higher dimensions. This provides a simple visualisation tool 
for high dimensional data as it is summarised into 2 or 3 dimensions. 
 
The 15x29 matrix of Soil Food Web, 32x29 matrix of Linnaeus and 38x29 matrix of Hill soil nutrient 
variables were normalised by deduction of the mean of every column and division by each column 
standard deviation prior to the analysis to meet the PCA assumptions. The percentage of explained 
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variation by each PC was reported, and the overall correlation between the first two PCs and the binary 
classes or high/low yielding orchards was investigated. 
The computations were performed by Statistics and Machine Learning toolbox, MATLAB 2020b. 
 

5.4.3 Classification trees 
 
Classification trees are group of supervised machine learning algorithms, addressing the following 
objective: Given the datasets, which biological, nutrient or combination variables could classify 
between high yielding/low yileding classes of orchards with maximum accuracy. What is the maximum 
accuracy, what are the cutting thresholds of the classifying variables, and how generalisable the 
conclusions are?  
 
Therefore, unlike traditional statistical methods such as univariate or multivariate models, there is no 
fixed target statistical significance (for example, 95%) for classification trees; the accuracy of 
classification trees is a relative metric and usually calculated by Out-Of-Bag (OOB) error estimation. The 
OOB error estimate is the misclassification rate in the dataset on which the classification tree was 
trained. The consistency is another metric for classification accuracy. It is the correct-classification rate 
in the dataset on which the classification tree was tested. It is important to consider both OOB error 
estimate and consistency in the performance assessment, as the classification trees tend to overfit the 
training set and perform poorly in the test set, which can hinder their generalisability.  
 
The Random Forest algorithm was used to fit trees to classify between high/low yielding orchards based 
on the 15 SFW biological, 32 Linnaeus biological and 38 Hill soil nutrient variables, as well as 
combinations of the variables. Random Forest fits bags of random classification trees on the training 
dataset to avoid problems such as overfitting. The bag of trees per Random Forest run is called an 
ensemble. 
 
There are several measures of the predictors (e.g. laboratory variables) importance in classification. The 
OOB Permuted Predictor Delta error (or OOB Delta error in short) was used. For each predictor 
(variable), the OOB Delta error is the increase in OOB error if that variable is left out of the bag among 
the observations. This measure is computed for every tree, then normalised by the average and 
standard deviation of the ensemble. 
 
Before fitting Random Forest trees, the algorithm should be tuned to the dataset. Therefore, two hyper-
parameters of trees minimum leaf size and number of predictors to sample were tuned for each dataset 
separately. The tuning was performed by Bayesian optimisation with OOB error estimate as the 
objective function. The tuned hyper-parameters were then used in the Random Forest algorithm for 
each dataset. 
 
In each round of Random Forest running, the (biological, chemical or combination) variables of 24 
orchards were randomly selected from all regions as the training set. The algorithm bagged 50 
classification trees on the training set and tested the performance on the remaining five orchards was 
recorded. This procedure was repeated 100 times per dataset. The mean OOB error estimate, the mean 
consistency, and the mean importance of the variables in classification were reported. 
 
The computations were performed by Statistics and Machine Learning toolbox, MATLAB 2020b 
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5.5 Fruit and leaves linear regression against yield 

5.5.1 Leaves 

 
Figure 13. Nitrogen levels versus 4-years average yield in avocado leaf samples. 

 
Figure 14. Potassium levels versus 4-years average yield in avocado leaf samples. 
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Figure 15.Calcium levels versus 4-years average yield in avocado leaf samples. 

 

 
Figure 16. Boron levels versus 4-years average yield in avocado leaf samples. 
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5.5.2 Fruit skin 
 

 
Figure 17. Nitrogen levels versus 4-years average yield in avocado skin samples. 

 

 
Figure 18. Potassium levels versus 4-years average yield in avocado skin samples. 
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Figure 19. Calcium levels versus 4-years average yield in avocado skin samples. 

 

 
Figure 20. Boron levels versus 4-years average yield in avocado skin samples. 
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5.5.3 Fruit flesh 
 

 
Figure 21. Nitrogen levels versus 4-years average yield in avocado flesh samples. 

 

 
Figure 22.Potassium levels versus 4-years average yield in avocado flesh samples. 
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Figure 23.Calcium levels versus 4-years average yield in avocado flesh samples. 

 

 
Figure 24.Boron levels versus 4-years average yield in avocado flesh samples. 
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5.6 Predicted means and confidence intervals of individual indicators 

 
Table 14.Predicted means following by confidence intervals in parenthesis of individual indicators for low and high yielding 
orchards. 

Lab Variable High performing soil 
 

Low performing soil pValue 

Soil Foodweb SF01 0.68(0.56-0.79) 0.66(0.54-0.79) 0.66 

SF02 27.62(17.76-37.47) 32.3(21.39-43.2) 0.15 

SF03* 317.85(197.18-512.37) 363.36(225.41-585.73) 0.22 

SF05 5.22(-1.04-11.48) 5.59(-1.19-12.37) 0.84 

SF06 320.62(163.28-477.95) 269.5(82.69-456.31) 0.48 

SF07 2.92(2.83-3.01) 2.87(2.76-2.99) 0.37 

SF08* 6840.11(993.96-47071.19) 12090.9(1756.98-83205.21) 0.12 

SF09* 2939.44(535.7-16129) 4467.78(814.23-24515.16) 0.32 

SF10* 245.95(55.11-1097.65) 123.07(27.58-549.26) 0.07 

SF11 0.52(0.38-0.65) 0.49(0.32-0.66) 0.74 

Linnaeus LN01 2.35(1.69-3) 2.68(1.85-3.51) 0.39 

LN04 0.53(0.43-0.62) 0.57(0.45-0.68) 0.43 

LN06 89.26(85.77-92.74) 88.82(84.96-92.69) 0.87 

LN07 84.41(79.39-89.44) 83.15(77.57-88.72) 0.73 

LN08 2.96(2.45-3.46) 2.73(2.14-3.33) 0.32 

LN09 6.13(4.83-7.44) 7.33(5.88-8.78) 0.22 

LN10 8.02(6.62-9.41) 9.32(7.77-10.86) 0.21 

LN12 82.5(79.2-85.8) 84.41(80.74-88.07) 0.43 

LN13 34.62(31.39-37.86) 35.75(32.14-39.36) 0.31 

LN14 7.46(5.88-9.04) 6.97(5.21-8.73) 0.67 

LN18 68.83(58.81-78.85) 66.46(55.34-77.58) 0.75 

LN19 86.28(80.77-91.78) 86.58(79.73-93.44) 0.92 

LN20 83.88(78.65-89.11) 83.22(77.42-89.03) 0.86 

LN23 1.86(1.5-2.22) 2.04(1.64-2.44) 0.5 

LN24 1.79(1.4-2.19) 2.03(1.59-2.47) 0.41 

LN25 97.07(94.37-99.77) 98.12(94.71-101.53) 0.53 

LN27 14.15(11.48-16.81) 16.65(13.69-19.61) 0.21 

LN28 41.53(33.91-49.15) 44(35.55-52.45) 0.66 

LN29 57.55(47.29-67.8) 62.69(51.31-74.07) 0.5 

LN32 0.35(0.15-0.55) 0.47(0.25-0.69) 0.4 

Visual Soil 
Assessment 

Soil Texture 1.5(1.35-1.65) 1.35(1.18-1.52) 0.2 

Soil Structure 1.8(1.64-1.97) 1.74(1.55-1.92) 0.59 

Earth Worms 11.19(6.81-18.39) 21.66(12.61-37.18) <0.001 

Hill soil nutrients HS01 5.89(5.59-6.2) 5.8(5.42-6.19) 0.61 

HS02 85.44(50.4-120.47) 117(78.13-155.87) 0.23 

HS03 14.31(6.81-21.81) 17.47(9.08-25.86) 0.23 

HS04 11.96(8.38-15.55) 10.89(6.7-15.09) 0.49 

HS05* 37.83(19-75.34) 39.1(19.64-77.87) 0.84 

HS06 5.26(2.18-8.34) 5.25(1.84-8.66) 0.99 

HS07* 161.28(106.86-243.43) 131.17(86.91-197.99) 0.05 
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HS08* 134.46(80.33-225.06) 108.23(64.66-181.16) 0.11 

HS09 2.51(1.89-3.13) 2.26(1.59-2.93) 0.15 

HS10 12.66(9.56-15.77) 10.61(7.04-14.19) 0.11 

HS11 13.35(9.91-16.78) 12.54(8.78-16.3) 0.44 

HS12 7.33(5.52-9.14) 6.14(4.05-8.22) 0.1 

HS13** 1440.67(826.51-2511.21) 1213.08(695.94-2114.49) 0.22 

HS14 0.58(0.34-0.82) 0.51(0.26-0.76) 0.17 

HS15 140(93.01-186.99) 138(85.87-190.13) 0.95 

HS16 56.81(38.75-74.87) 71.23(51.19-91.27) 0.28 

HS17 249.25(120.88-377.63) 311.06(166.62-455.49) 0.18 

HS18 1820.87(1385.47-2256.26) 1749.02(1210.51-2287.53) 0.76 

HS19 214.55(145.19-283.91) 213.94(131.15-296.73) 0.98 

HS20 26.03(12.11-39.95) 25.47(10.32-40.63) 0.89 

HS21 105.98(72.93-139.02) 98.15(60.09-136.21) 0.55 

HS22 36.5(-8.24-81.25) 35.68(-9.68-81.04) 0.87 

HS23 38.38(24.28-52.49) 41.76(26.11-57.41) 0.74 

HS24* 11.75(1.46-94.68) 6.84(0.85-55.09) 0.29 

HS25 5.27(2.15-8.38) 3.86(0.06-7.67) 0.38 

HS26 0.07(0-0.2) 0.05(0-0.19) 0.47 

HS27* 1290.59(1059.99-1571.35) 1342.29(1102.45-1634.3) 0.44 

HS28* 98.61(26.69-170.53) 50.01(0-133.01) 0.1 

HS29 0.92(0.35-1.49) 1.13(0.5-1.75) 0.24 

HS30 12.58(6.63-18.53) 11.22(4.61-17.83) 0.5 

HS31 2.36(1.3-3.43) 2.39(1.17-3.62) 0.95 

HS32 0.14(0.09-0.18) 0.12(0.07-0.18) 0.63 

HS33 3.5(2.69-4.32) 4.13(3.1-5.15) 0.23 

HS34 48.44(43.54-53.33) 44.62(39.18-50.05) 0.29 

HS35 9.4(7.32-11.48) 9.35(6.81-11.89) 0.96 

HS36* 0.55(0.24-1.25) 0.53(0.23-1.2) 0.83 

HS37 26.02(12.69-39.35) 24.11(10.1-38.12) 0.51 

HS38 61.94(56.49-67.39) 56.69(50.64-62.74) 0.2 

HS39 0.81(0.6-1.03) 0.83(0.61-1.04) 0.69 
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5.7 Importance estimate of the set of variables in predicting high and low yield 

5.7.1 Soil Foodweb 
 
Table 15. Importance estimate of Soil Foodweb variables in classifying between high and low yielding soils. If the average OOB  
delta error was 0.1 or greater, the variable is considered a good predictor; otherwise, the predictors were considered of low 
importance. 

Ave. OOB delta error Name Label Units 

≥ 0.1 Dry Weight SF01 --- 

≥ 0.1 Total Bacteria (TB) SF03 mg/kg 

≥ 0.1 Total Fungi (TF) SF06 mg/kg 

≥ 0.1 Flagellates SF08 number/g 

≥ 0.1 Amoebae SF09 number/g 

≥ 0.1 Ciliates SF10 number/g 

< 0 Active Bacteria (AB) SF02 mg/kg 

< 0 Active Fungi (AF) SF05 mg/kg 

< 0 Hyphal Diameter SF07 µm 

< 0 Endo (colonization) SF11 % 

 

5.7.2 Linnaeus  
 
Table 16. Importance estimate of Linnaeus variables in classifying between high and low yielding soils. If the average OOB  delta 
error was 0.1 or greater, the variable is considered a good predictor; otherwise, the predictors were considered of low 
importance. 

Ave. OOB delta error Name Label Units 

≥ 0.1 Gram Negative Bacteria LN09 mg/kg 

0-0.1 Microbial Balance LN12 Indicator 

0-0.1 Nutrient Cycling Rate - MWSE only LN19 Indicator 

0-0.1 Pseudomonas LN24 mg/kg 

0-0.1 Residue Breakdown Rate - MWSE only LN25 Indicator 

0-0.1 Total Bacteria LN27 mg/kg 

0-0.1 Total Fungi LN28 mg/kg 

0-0.1 Total Microorganisms LN29 mg/kg 

0-0.1 Nutrient Solubilisation Rate - MWSE only LN20 Indicator 

< 0 Actinomycetes LN01 mg/kg 

< 0 Bacteria Stress Indicator LN04 Indicator 

< 0 Disease Resistance - MWSE only LN06 Indicator 

< 0 Drought Resistance - MWSE only LN07 Indicator 

< 0 Fungi to Bacteria Ratio LN08 Ratio 

< 0 Gram Positive Bacteria LN10 mg/kg 

< 0 Microbial Diversity Indicator LN13 Indicator 

< 0 Mycorrhizal Fungi (AMF) LN14 mg/kg 

< 0 Protozoa LN23 mg/kg 

< 0 True Anaerobic Bacteria LN32 mg/kg 
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5.7.3 Hill Laboratories 

 
Table 17. Importance estimate of Hill laboratories variables in classifying between high and low yielding soils. If the average 
OOB  delta error was 0.1 or greater, the variable is considered a good predictor; otherwise, the predictors were considered of 
low importance. 

Ave. OOB delta error Name Label Units 

≥ 0.1 C/N Ratio HS11 --- 

≥ 0.1 Iron (Mehlich 3) HS21 mg/L 

≥ 0.1 Aluminium (Mehlich 3) HS27 mg/L 

0-0.1 Olsen Phosphorus HS02 mg/L 

0-0.1 Potassium HS03 MAF 

0-0.1 Sodium HS06 MAF 

0-0.1 Potentially Available Nitrogen (15cm Depth) HS07 kg/ha 

0-0.1 Anaerobically Mineralisable N HS08 µg/g 

0-0.1 Anaerobically Mineralisable N/Total N Ratio HS09 % 

0-0.1 Total Carbon HS12 % 

0-0.1 Sodium (Mehlich 3) HS20 mg/L 

0-0.1 Manganese (Mehlich 3) HS22 mg/L 

0-0.1 Cobalt (Mehlich 3) HS26 mg/L 

0-0.1 Calcium HS30 me/100g 

0-0.1 Magnesium HS31 me/100g 

0-0.1 Sodium HS32 me/100g 

0-0.1 Sodium HS36 %BS 

0-0.1 CEC HS37 me/100g 

0-0.1 Volume Weight HS39 g/mL 

< 0 pH HS01 pH 

< 0 Calcium HS04 MAF 

< 0 Magnesium HS05 MAF 

< 0 Organic Matter HS10 % 

< 0 Total Nitrogen HS14 % 

< 0 Phosphorus (Mehlich 3) HS15 mg/L 

< 0 Sulphur (Mehlich 3) HS16 mg/L 

< 0 Potassium (Mehlich 3) HS17 mg/L 

< 0 Calcium (Mehlich 3) HS18 mg/L 

< 0 Magnesium (Mehlich 3) HS19 mg/L 

< 0 Zinc (Mehlich 3) HS23 mg/L 

< 0 Copper (Mehlich 3) HS24 mg/L 

< 0 Boron (Mehlich 3) HS25 mg/L 

< 0 Total Copper HS28 mg/kg 

< 0 Potassium HS29 me/100g 

< 0 Potassium HS33 %BS 

< 0 Calcium HS34 %BS 

< 0 Magnesium HS35 %BS 

< 0 Total Base Saturation HS38 % 
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5.7.4 Hill Laboratories and Soil Foodweb combination 
 
Table 18. Importance estimate of Hill Laboratories and Soil Foodweb combination variables in classifying between high and low 
yielding soils. If the average OOB delta error was 0.1 or greater, the variable is considered a good predictor; otherwise, the 
predictors were considered of low importance. 

Ave. OOB delta error Name Label Units 

≥ 0.1 Iron (Mehlich 3) HS21 mg/L 

≥ 0.1 Aluminium (Mehlich 3) HS27 mg/L 

0-0.1 pH HS01 pH 

0-0.1 Olsen Phosphorus HS02 mg/L 

0-0.1 Calcium HS04 MAF 

0-0.1 Sodium HS06 MAF 

0-0.1 Potentially Available Nitrogen (15cm Depth) HS07 kg/ha 

0-0.1 Anaerobically Mineralisable N/Total N Ratio HS09 % 

0-0.1 C/N Ratio HS11 --- 

0-0.1 Total Carbon HS12 % 

0-0.1 Cobalt (Mehlich 3) HS26 mg/L 

0-0.1 Magnesium HS31 me/100g 

0-0.1 Sodium HS32 me/100g 

0-0.1 Sodium HS36 %BS 

0-0.1 CEC HS37 me/100g 

0-0.1 Volume Weight HS39 g/mL 

0-0.1 Total Bacteria (TB) SF03 mg/kg 

0-0.1 Total Fungi (TF) SF06 mg/kg 

0-0.1 Hyphal Diameter SF07 µm 

0-0.1 Flagellates SF08 number/g 

0-0.1 Ciliates SF10 number/g 

0-0.1 TF/TB SF12 ratio 

0-0.1 Sodium (Mehlich 3) HS20 mg/L 

<0 Potassium HS03 MAF 

<0 Anaerobically Mineralisable N HS08 µg/g 

<0 Manganese (Mehlich 3) HS22 mg/L 

<0 Calcium HS30 me/100g 

<0 Magnesium HS05 MAF 

<0 Organic Matter HS10 % 

<0 Total Nitrogen HS14 % 

<0 Phosphorus (Mehlich 3) HS15 mg/L 

<0 Sulphur (Mehlich 3) HS16 mg/L 

<0 Potassium (Mehlich 3) HS17 mg/L 

<0 Calcium (Mehlich 3) HS18 mg/L 

<0 Magnesium (Mehlich 3) HS19 mg/L 

<0 Zinc (Mehlich 3) HS23 mg/L 

<0 Copper (Mehlich 3) HS24 mg/L 

<0 Boron (Mehlich 3) HS25 mg/L 

<0 Total Copper HS28 mg/kg 
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<0 Potassium HS29 me/100g 

<0 Potassium HS33 %BS 

<0 Calcium HS34 %BS 

<0 Magnesium HS35 %BS 

<0 Total Base Saturation HS38 % 

<0 Dry Weight SF01 --- 

<0 Amoebae SF09 number/g 

<0 Active Bacteria (AB) SF02 mg/kg 

<0 Active Fungi (AF) SF05 mg/kg 

<0 Endo (colonization) SF11 % 

 
  



 

Page 50 of 53 
 

5.8 Decision trees 

 
These trees are one out hundred trees produce by machinery learning analysis; they are not a 
conclusive methodology for reading laboratory results since the dataset was limited to 29 orchards. To 
read the decision tree, follow the logic in the example below:  
 
Figure 25, if total bacteria is less than 292, then it is a high yielding orchard. Otherwise, if Total bacteria 
is equal to or greater than 471, you have a high yielding orchard. Otherwise, if Endomycorhyizae is lower 
than 0.425, you have a high yielding orchard, otherwise low yielding orchard. 
 

5.8.1 Soil Foodweb 
 

 
Figure 25. An example of a decision tree for classifying between low and high yielding orchards by Soil Foodweb biological 
variables Total bacteria (SF03) and Endomycorhyizae (SF11). 

 

5.8.2 Linnaeus 
 

 
Figure 26. An example of a decision tree classifying between high performing and low yielding orchards by Linnaeus biological 
variables. LN12 – Microbial balance and LN09 – Gram negative bacteria. 
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5.8.3 Hill Laboratories 
 

 
Figure 27. An example decision tree for classifying between high and low yielding soils by Hill laboratories nutrient variables, 
HS27 – Aluminium Mehlich 3 and HS01 – pH.  

 

5.8.4 Combination of Soil Foodweb and Hill laboratories soil nutrients 
 

 
Figure 28. An example decision tree for classifying between high and low yielding soils by Hill laboratories nutrient variables 
combined with Soil Food Web biological variables. 

 


