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ABSTRACT

Management of groundwater quality is assisted by an
understanding of reference conditions, which describe the
concentration ranges expected for key substances in the absence
of human impact. This study evaluates reference conditions for
NO3–N in New Zealand groundwater based on three
complementary methods: hierarchical cluster analysis,
relationships to groundwater age, and regression against a
measure of land-use impact. The three methods result in very
similar national-scale estimates of reference conditions for NO3–N
concentration in oxic, minimally impacted groundwater, with the
80th, 90th and 95th percentiles found to be 1.65 ± 0.12, 1.97 ±
0.14 and 2.32 ± 0.14 mg/l, respectively (weighted average ± 95%
confidence level), in good general agreement with previous
studies from New Zealand and overseas. Anoxic groundwaters
were treated separately for definition of reference conditions,
with the 80th and 90th percentiles of NO3–N found to be 0.04 ±
0.01 and 0.16 ± 0.01, respectively (the 95th percentile could not
be estimated reliably). For both oxic and anoxic groundwater,
where a site-specific investigation has not been conducted to
estimate reference conditions at a local scale, we suggest that the
80th percentile is an appropriate national-scale default threshold,
to match the thresholds used for surface waters under the
Australian and New Zealand Guidelines for Fresh and Marine
Water Quality.
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Introduction

Elevated nitrate-nitrogen (NO3–N) concentration in groundwater is a worldwide issue
(Abascal et al. 2022). Excess NO3–N in groundwater is derived from a variety of
current and legacy sources including agriculture, wastewater, stormwater and industry
(Wang et al. 2013; Abascal et al. 2022). Elevated NO3–N concentrations can affect
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groundwater ecosystems, compromise the use of groundwater as a potable water supply
and, through groundwater-surface water interactions, affect the quality of surface water
and dependent ecosystems in receiving environments (Carpenter et al. 1998; Marmonier
et al. 2018).

In New Zealand, NO3–N inputs into freshwater systems are primarily from livestock
urine (Parfitt et al. 2012). Urine patches contain 600–1000 kg N ha−1 (Monaghan et al.
2007). These loads are well above the nitrogen requirements for pasture growth (cf.
200 kg N ha−1), which leaves the remainder susceptible to leaching (Di and Cameron
2007). ElevatedNO3–N concentrations and increasing temporal trends have been reported
for several long-term groundwater monitoring sites across New Zealand (Daughney and
Wall 2007; Daughney and Randall 2009; Morgenstern and Daughney 2012; Moreau
et al. 2016; StatsNZ 2020), a pattern also evident in surface waters (StatsNZ 2022).

Understanding of reference conditions for NO3–N in groundwater is vital for selecting
appropriate management approaches and objectives (Shand et al. 2007). Reference con-
ditions specify the expected range of NO3–N concentrations in groundwater in the
absence of human impacts. The terms baseline and background are also used (Edmunds
et al. 2003; Reimann et al. 2005), but here we use the term reference conditions due to
its common use in freshwater policy (Hess et al. 2020). Understanding of reference con-
ditions enables partitioning of observed NO3–N concentration into the fraction that is
anthropogenic vs. natural. Without such understanding, it is difficult to quantify the mag-
nitude of human impacts on groundwater quality (Brydie et al. 2014). In practice it can be
scientifically challenging to determine reference conditions representative of the complete
absence of human impacts and so some studies instead develop estimates for minimally
disturbed conditions (Huo et al. 2012; McDowell et al. 2013; Swanson et al. 2020), a con-
vention also taken in the present study. Regardless of whether defined as a complete
absence or a minimal level of human disturbance, understanding of reference conditions
enables policy-makers, land managers and communities to set limits or targets for NO3–

N concentrations in groundwater that are realistic and achievable.
Reference conditions are described as a distribution, not a single number, to encapsu-

late natural range and variation (Reimann et al. 2005; Shand et al. 2007; Edmunds and
Shand 2008). Statistically derived numeric thresholds are often selected from the distri-
bution to assist comparison to concentrations that have been measured in water quality
investigations. For example, the Australian and New Zealand Guidelines for Fresh and
Marine Water Quality define Default Guideline Values for many water quality par-
ameters in surface water, which are based on the 20th and 80th percentiles of the distri-
bution of concentrations inferred to occur under reference conditions (ANZG 2018).
Other thresholds have also been recommended, including the 95th percentile
(Edmunds et al. 1987) or the 97.7th percentile (Langmuir 1997). The 90th percentile
has also been proposed as an appropriate threshold for small datasets (fewer than 60
measurements) or where human impacts cannot be unequivocally excluded (Hinsby
et al. 2008). Note that reference condition thresholds are not necessarily management
limits or targets that needs to be met, but rather their exceedance may simply be taken
as a prompt to consider whether further investigation should be undertaken to determine
whether aquatic ecosystems are sufficiently protected.

Reference conditions are often defined separately for specific water bodies or types of
water bodies. For example, the range of natural concentrations of NO3–N in
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groundwater may vary according to aquifer lithology, redox conditions, flow-paths
(including aquifer depth) and groundwater age. Unless there is a geological source of
NO3–N, its concentration under reference conditions is likely to be low under anoxic
(reducing) conditions where nitrate is removed through microbiologically-facilitated
denitrification, especially in older groundwater. In contrast, detectable levels of NO3–

N are expected for oxic groundwaters, even in the absence of human impacts
(Madison and Brunett 1985; Daughney and Reeves 2005). Accordingly, different
definitions of reference conditions (and their corresponding percentile-based
thresholds) may be needed for different aquifers, parts of aquifers, or aquifer types
(Shand et al. 2007).

A variety of methods are available to estimate reference conditions for freshwater
quality. Ideally, reference conditions could be determined from measurements made at
monitoring sites located in pristine, unimpacted locations (Shand et al. 2007; ANZG
2018). However, this approach is often hampered by a lack of monitoring sites in pristine
areas (Dodds and Oakes 2004). This is the case in New Zealand (Daughney et al. 2012;
McDowell et al. 2013), especially for groundwater.

In the absence of monitoring sites in pristine locations, another option is to use his-
torical data from any or all available sites regardless of their location, but to estimate
reference conditions based only on samples collected in pre-industrial time periods
(Edmunds et al. 2003; Limbrick 2003; Griffoen et al. 2008; Hinsby et al. 2008).
However, use of historical data may not be possible because older measurements may
be of poor quality or not available at all (Shand et al. 2007). As an alternative to reliance
on historical measurements, water dating techniques can be used to estimate ground-
water quality prior to anthropogenic activity (Morgenstern and Daughney 2012;
Huang et al. 2012). Isotope ratios such as 18O/16O and 15N/14N can also be used with
the aid of modelling to estimate the source of NO3–N and a mass balance of N, allowing
the estimation of reference conditions for aquifers with mixed inputs (Minet et al. 2017).

In the absence of data from unimpacted monitoring sites or time periods, various stat-
istical techniques have been used to estimate reference conditions for the chemical com-
position of groundwater. In early work, reference conditions were determined as those
concentrations lower than two standard deviations from the mean of all measured con-
centrations (Sinclair 1974; Nolan and Hitt 2003). As the mean was vulnerable to skewed
data, subsequent refinement changed this to lower than two median absolute deviations
from the median of all observed concentrations (Reimann et al. 2005). More recent work
has focused on cumulative probability plots (Reimann et al. 2005; Panno et al. 2006; Koh
et al. 2009). For example, using log-scale cumulative probability plots, changes in linear
slopes are inferred to differentiate NO3–N concentrations that are indicative of reference
conditions versus human impact, or to indicate different processes controlling ground-
water quality (Coetsiers et al. 2009; Gemitzi 2012; Rahman et al. 2020). A related
approach developed through the EU BRIDGE programme uses cumulative probability
plots in concert with pre-selection methods to identify and exclude monitoring results
that may show evidence of human impact, for example, based on parameters such as
Cl concentration (Griffoen et al. 2008; Hinsby et al. 2008). Iterative outlier removal
and gaussian mixture models can also be used to distinguish groundwater quality
measurements that represent unimpacted versus impacted conditions (Nakić et al.
2007; Kim et al. 2015; Manu et al. 2022).
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For streams, rivers and lakes, the reference conditions have also been inferred by iso-
lating an anthropogenic factor such as the proportion of catchment area under intensive
agriculture (Dodds and Oakes 2004; Abell et al. 2019). In surface waters, examples exist
where variation is captured by classification systems (Snelder and Biggs 2002), resulting
in several definitions of reference conditions. By grouping sites with similar character-
istics and plotting contaminant concentrations at sites against, for example, upstream
area in intensive agriculture, a regression can be fitted for each environmental class.
Here the intercept represents reference conditions, because in this case it is predicting
the chemical composition of freshwater in the absence of any upstream intensive agricul-
ture (McDowell et al. 2013).

Each of the above-listed methods for evaluating reference conditions comes with
advantages and disadvantages. Statistical methods for estimating reference conditions
are fast, cheap, and can be relatively simple, but often suffer from higher uncertainty –

especially if based on few measurements over large areas or complex geologies (Cruz
and Andrade 2015). Moreover, these statistical methods do not necessarily provide
unequivocal insight into the specific geochemical processes or anthropogenic drivers
that are controlling the concentrations of NO3–N. In comparison, the use of isotopes
and mass balance modelling is relatively expensive and time consuming but can
produce robust definitions for reference conditions. Techniques that rely on environ-
mental classifications and/or comparison of observed NO3–N concentrations to the
levels of anthropogenic stressors, such as area of intensive agriculture, require infor-
mation on the source areas (capture zones) of recharge, but this information is often
lacking for groundwater monitoring sites. Of note for the context of the present investi-
gation, relatively few previous studies have applied more than one method for evaluation
of reference conditions for the chemical composition of groundwater, meaning that the
strengths and weaknesses of the different techniques are difficult to compare and assess
robustly.

The objective of this study is to estimate reference conditions and corresponding
thresholds for NO3–N concentrations in New Zealand groundwater. This is undertaken
using national-scale datasets and comparison of results from three methods. The first
method is hierarchical cluster analysis (HCA), a multivariate statistical method applied
by Daughney and Reeves (2005). The second method involves a comparison of NO3–N
concentrations to groundwater residence times derived by fitting lumped parameter
models to measurements of age tracers such as tritium, as demonstrated by Morgenstern
and Daughney (2012). The final method employs a comparison of NO3–N concentrations
to a metric of land use intensity in the area around each monitoring site, like the approach
that has been applied to determine reference conditions for chemical indicators in New
Zealand surface waters (McDowell et al. 2013). While all three methods have been
applied previously in New Zealand, they have not employed data from the same sites
and time periods, nor have they used consistent percentile-based thresholds that enable
meaningful comparison of the inferred reference conditions.

Methods

Calculations were performed with R version 4.2.2, using the specific functions and
packages detailed hereafter.
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Groundwater quality data

This study used two groundwater quality datasets (Figure 1). The first dataset was
sourced from the New Zealand National Groundwater Monitoring programme
(NGMP), a long-term research and monitoring programme that includes approximately
100 monitoring sites located across the country (Supplementary Material Table 1).
NGMP sites are selected to encompass a range of land uses, aquifer confinement and
lithology. Further details on the NGMP and its sites are provided by Daughney and
Reeves (2005) and Daughney et al. (2012). The second dataset included measurements
from 944 state-of-the-environment sites monitored by regional authorities and compiled
by Land Air Water Aotearoa (LAWA). These state-of-the-environment monitoring sites
are selected for a range of purposes according to the different monitoring objectives and
network designs devised by the individual regional authorities.

Groundwater sampling and analytical methods are generally comparable between the
NGMP dataset and the LAWA dataset (Daughney et al. 2012). Most sites are sampled
quarterly, though some regional authority sites are monitored monthly or annually.
Samples are collected according to a standard protocol (New Zealand Ministry for the
Environment 2006). NGMP samples are analysed in the field for electrical conductivity,
pH and temperature, and analysed in the laboratory for the concentrations of major ions
(Na, K, Ca, Mg, HCO3, Cl, SO4) along with Br, F, Fe, Mn, SiO2 and selected forms of
nitrogen and phosphorus (typically at least NO3–N, NH4–N and PO4–P). While many
of these same parameters are also monitored by regional authorities (see Daughney
and Randall 2009), only NO3–N, NH4–N, PO4–P, Cl and electrical conductivity are rou-
tinely made publicly available through the LAWA website (see Data Availability).

Figure 1. Locations of monitoring sites in the NGMP dataset (left panel) and LAWA dataset (right
panel). Symbology corresponds to hydrochemical facies identified by HCA.
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For the NGMP and LAWA datasets, this study used measurements made during two
non-overlapping ten-year time periods: 1 January 2000 to 31 December 2009; and 1
January 2010 to 31 December 2019. Ten-year time periods were selected to provide
sufficient data for analysis within each time window, particularly for estimation of
upper and lower percentiles in the distributions of NO3–N concentration (Helsel et al.
2020). The start and end dates for these time windows are arbitrary but were selected
such that the second period used in this study approximated the most recent intervals
used for groundwater quality trend reporting by Statistics New Zealand (1999–2018;
StatsNZ 2020) and LAWA (2012–2021; LAWA 2022).

For both time periods, the NGMP and the LAWA datasets contain censored analytical
results (i.e. results reported as being below a detection limit), which is typical for water
quality datasets (Helsel et al. 2020). The level of censoring varies by site, by parameter and
over time. For example, censored results for Ca concentrations are very uncommon in
the NGMP and LAWA datasets, whereas censored results account for a total of 20%
and 11% of all NO3–N results in these two datasets, respectively, reflecting the very
low concentrations that occur in some groundwaters (Langmuir 1997). Other parameters
including F, Fe, Mn, NH4–N and PO4–P also commonly display censored results for a
non-trivial proportion of sites and samples. For these parameters, the censoring
threshold can change over time, e.g. due to improved analytical methods. To illustrate,
across the NGMP and LAWA datasets there are more than ten different censoring
thresholds for NO3–N, ranging from <0.001 to <1. The NGMP and LAWA datasets
were therefore prepared for subsequent analysis using two steps appropriate for censored
values as described below.

The first step in preparing the groundwater quality datasets for subsequent analysis
was to calculate a median value for each parameter at each site, based on its available
time-series data. This was undertaken separately for the two ten-year periods used in
this study by applying the ros function of the NADA package to perform regression on
order statistics. This approach uses log-transformation and Weibull plotting positions
of uncensored values to replace the censored values with numeric estimates that are
then used in the calculation of the site-specific median for a given parameter (Helsel
et al. 2020). This approach is suitable for datasets with multiple censoring thresholds
and censoring levels of up to 70%–80% (Helsel and Cohn 1988). In this study, the ros

function was not applied to any site/parameter dataset that had a censoring level of
greater than 70%, and instead the median was recorded as a censored value at the
highest censoring threshold for the relevant parameter and site. As a hypothetical
example, a site having measured concentrations of <0.005, <0.003 and <0.001 in three
different samples would have its median recorded as <0.005. At the end of this data prep-
aration step, the time-series datasets had been reduced to two s × p arrays (one array for
the medians calculated for each ten-year period), where s and p were the number of sites
and number of parameters in the dataset, respectively, and in which a portion of the
results remained as censored values.

The second step in the data preparation was to replace the censored median values
that remained after the first step. This was undertaken on a per-parameter basis
whereby, across all sites, any remaining censored values were replaced with the highest
censoring threshold for that parameter, and all uncensored values less than the same cen-
soring threshold were similarly replaced (Helsel et al. 2020). For example, sites having
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median values of 0.22, 0.108, <0.03, 0.019 and <0.01 for a particular parameter would be
replaced by 0.22, 0.108, 0.03, 0.03 and 0.03. The reason for this approach is that several of
the methods used to estimate reference conditions cannot function with censored values,
and it is not possible to determine which of these last three values is largest or smallest,
hence they were treated as equivalent.

The impacts of these approaches for dealing with censored data are discussed below.
Note that while the above method description refers to calculation of median values on a
site/parameter basis, the same methods were also used to calculate the 80th percentiles
used as input for estimation of reference conditions via regression against a measure
of land-use impact.

Estimating reference conditions

We estimated reference conditions for NO3–N in New Zealand groundwater using three
separate approaches, each described in more detail in the following subsections: Hier-
archical Cluster Analysis (HCA); groundwater age data; and a regression of NO3–N con-
centrations against a measure of land-use intensity. All approaches were applied
independently to the NGMP dataset and the LAWA dataset, and independently for
the two ten-year time periods (2000–2009 and 2010–2019).

To enable intercomparison of results, and to maintain consistency with other
studies (e.g. Daughney and Reeves 2005; McDowell et al. 2013) and Government
reporting (StatsNZ 2020), we describe reference conditions using seven percentile-
based thresholds (5th, 10th, 20th, 50th, 80th, 90th, 95th) for each of the three
above-listed methods. Unless otherwise noted, percentiles and their non-parametric
95% confidence intervals were determined using the quantCI function of the quanti-

leNPCI package (version 1.6).

Hierarchical cluster analysis

HCA is a multivariate statistical method that has been employed to identify hydrochemi-
cal facies in groundwater systems (e.g. Güler et al. 2002). Each facies represents a group of
groundwaters with similar chemical composition, for example, due to similar origin and/
or pattern of hydrochemical evolution (Freeze and Cherry 1979). Identification of hydro-
chemical facies using HCA is typically based on the site-specific median values of many
different water quality parameters, as shown through the early work of Back (1961, 1966),
Morgan and Winner (1962) and Seaber (1962). In this way, the set of hydrochemical
facies identified in a large water quality dataset provides a convenient summary of a
large amount of multivariate time-series data, while also providing insights into key
factors that may drive hydrochemical evolution, such as water-rock interaction,
aquifer flow pathways, groundwater-surface water interaction and extent of human
impacts (e.g. Farnham et al. 2002; Cloutier et al. 2008; Guggenmos et al. 2011; Raiber
et al. 2012; Nejatijahromi et al. 2019). Note that HCA does not provide
direct information on the processes or drivers that differentiate the hydrochemical
facies, so these must be inferred through interpretation and/or other sources of infor-
mation. Nonetheless, previous work in New Zealand has demonstrated that hydrochemi-
cal facies identified through HCA can be used to infer reference conditions for
groundwater quality (Daughney and Reeves 2005; Daughney et al. 2012).
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In this study we evaluate hydrochemical facies in New Zealand groundwater using the
NGMP dataset. HCA was conducted using the hclust command (contained in the R base
stats package), based on z-scored, log-transformed site-specific median concentrations of
fifteen parameters (Br, Ca, Cl, F, Fe, HCO3, K, Mg, Mn, Na, NH4–N, NO3–N, PO4–P,
SiO2, SO4). Clustering was based on Ward’s method, with the square of the Euclidean
distance used as the separation measure (Güler et al. 2002). These methods are identical
to those of Daughney and Reeves (2005), except that in the earlier study the site-specific
medians were based on samples collected over different time periods, starting at whatever
date each site joined the NGMP (between 1990 and 1995) and ending in 2003, whereas
the present study uses the two 10-year time periods (2000–2009 and 2010–2019) as noted
above.

Identical HCA methods could not be applied to the LAWA dataset because it only
includes analyses of NO3–N, NH4–N, PO4–P, Cl and electrical conductivity. However,
the sites comprising the LAWA dataset are known to display the same hydrochemical
facies as the NGMP dataset (Daughney et al. 2012). Thus, we used the NGMP dataset
to train a linear discriminant analysis (LDA) model using the lda function in the
package MASS (version 7.3–58.1). The LDA model was trained to predict each NGMP
site’s assignment to a hydrochemical facies, but based only on its z-scored, log-trans-
formed median concentrations of the five water quality variables that are also available
in the LAWA dataset. This approach is similar to previous applications of the NGMP
dataset for training of machine-learning applications (Moreau and Daughney 2021).
Next, we validated the LDA model by testing its ability to accurately reproduce hydro-
chemical facies assignments previously reported by Daughney and Randall (2009) for
a national dataset of over 1000 groundwater sites, many of which are included in the
LAWA dataset. Finally, we applied the validated LDA model to assign each site in the
LAWA dataset to one of the hydrochemical facies recognised in the NGMP dataset.

Relationship to groundwater age

Groundwater age describes the residence time of a parcel of groundwater within an
aquifer system, i.e. the time elapsed since recharge. Due to convergence of flow paths
of different length and recharge source, mainly at the sampled discharge points such
as wells and springs, any groundwater sample contains a mixture of different ages (Mal-
oszewski and Zuber 1996). The groundwater age distribution within a particular sample
can be described by measures of its central tendency (e.g. mean age) and distributional
shape (e.g. age mixing model), which in turn can be estimated by fitting a lumped par-
ameter model (LPM) to measured concentrations of age tracers in the groundwater
sample (Zuber et al. 2005; Daughney et al. 2010; Morgenstern and Daughney 2012).

Groundwater age distributions for the NGMP sites were first reported by Daughney et al.
(2010). The age distributions were evaluated by fitting the exponential-piston flow LPM
(Zuber et al. 2005) to site-specific concentrations of the age tracers tritium, sulphur hex-
afluoride (SF6) and chlorofluorocarbons (CFCs) measured in the period 2005–2010. Inter-
preted mean groundwater age at the NGMP sites ranged from less than 1 year to more than
100 years, with the 25th, 50th and 75th percentiles in mean groundwater age across the
NGMP network being approximately 10, 40 and 100 years, respectively.

Morgenstern and Daughney (2012) compared the mean groundwater age at the
NGMP sites to the site-specific median concentrations of a range of groundwater
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quality parameters as reported by Daughney and Randall (2009). Concentrations of par-
ameters such as Na, HCO3, SiO2, F, Fe, Mn and PO4–P were generally observed to
increase with groundwater age, reflecting likely origin from natural water-rock inter-
action. Concentrations of other parameters such as NO3–N, Cl and SO4 were generally
observed to be higher in younger groundwaters, suggesting that they may be sourced
from human activities and/or subject to reactions that tend to cause their concentrations
to decrease over time (e.g. denitrification). Morgenstern and Daughney (2012) used a
visual fitting approach to infer reference conditions based on the observed relationships
between groundwater quality and mean age.

In the present study we re-plot the relationships between groundwater age and NO3–N
concentration using updated data from the NGMP network. Site-specific median NO3–N
concentrations were determined for the two periods (2000–2009, 2010–2019) to allow
comparison with results from other methods used in this study. The groundwater age dis-
tributions reported by Morgenstern and Daughney (2012) were reinterpreted using Tra-
cerLPM (version 1) (Jurgens et al. 2012) by re-fitting LPMs to account for time-series
age tracer measurements made since 2010 (Supplementary Material Table 1). Improved
age interpretations were developed for most sites, made possible from availability of
additional complementary tracers (SF6, Halon-1301) and longer time series of tracer
data, and the fact that the so-called bomb-tritium from the atmospheric thermonuclear
weapons testing in the early 1960s has further decayed, removing any ambiguity in data
interpretation over the last 10 years in New Zealand. Of note, the richness of the longer
time series and additional tracer data now available reveals the existence of binary age
mixing at some NGMP sites (cf. Morgenstern et al. 2015), for example due to wells
tapping into two aquifers and subsequent mixing of water with a younger and an older
age distribution, necessitating the application ofmore complex LPMs than used previously,
and providing greater constraint on the site-specific mean groundwater age.

As an improvement over the visual fitting approach used by Morgenstern and Daugh-
ney (2012), in this study we used the constraint line method to interpret reference con-
ditions and coinciding thresholds from the plot of site-specific mean groundwater age
versus median NO3–N concentration. The constraint line was determined by dividing
the plot into bins along the x-axis, determining the 99th quantile for each bin, then
fitting a regression line to these points (Hao and Wu 2017). An optimal bin size of 25
years was selected to provide a balance between maximising the number of bins while
retaining a sufficient number of data points in each bin to allow estimation of the 99th
quantile. For comparison we used a second approach, which ignored the constraint
line and instead applied quantile regression at the 80th percentile for sites assigned to
the same hydrochemical facies.

Due to the lack of an available compilation of groundwater age distributions, the
LAWA dataset could not be used to validate the results obtained from the NGMP
dataset with this method.

Regression against a measure of land-use impact

Regression of observed concentrations against a measure of land-use impact has been
applied to estimate the reference conditions for chemical indicators in New Zealand
rivers and streams (McDowell et al. 2013). In this approach, the 80th percentile for
NO3–N concentration was calculated from time series data for each of >1000 river
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water monitoring sites across New Zealand. A national river environment classification
(REC) was applied to group the sites into categories according to the environmental con-
ditions that are strong determinants of water quality (Snelder and Biggs 2002). For each of
themain REC classes, the site-specific values for the 80th percentile NO3–N concentration
were plotted against the percentage of intensive agricultural land use in the catchment
upstream of each site. Here, intensive agricultural land use represents an indicator of
human activity. Fewer than 10% of the monitoring sites were situated in pristine unmo-
dified catchments so, for each of the main REC classes, the intercept of a fitted regression
line was used to estimate the 80th percentile NO3–N concentration expected for sites with
no intensive agriculture upstream. These values have been subsequently adopted as
Default Guideline Values (under reference conditions) for New Zealand rivers in the Aus-
tralian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018).

In the present study we applied an analogous approach using the NGMP dataset to esti-
mate reference conditions for the concentration of NO3–N in New Zealand groundwater.
To estimate the degree of land-use impact affecting each site, we used a nationalmap of esti-
mated NO3–N leached from livestock in the 2017 year (StatsNZ 2019), which accounts for
animal types, stocking density and physiographic factors such as soil type and climate, but
does not quantify uncertainty (Ausseil and Manderson 2018). Note that the mapped leach-
ing rates do not account for fertiliser application or non-agricultural sources of NO3–N, but
livestock sources are dominant in New Zealand (Parfitt et al. 2012). To date, the land areas
contributing recharge (i.e. capture zones) have been rigorously mapped for only a small
number of NGMP sites (e.g. Toews andDonath 2015), so in the absence of this information
we determined the average NO3–N leaching rate (kg N per ha) within a defined ‘circular
area surrogate’ using a 0.5, 1.0, 2.0 or 5.0 km radius around each site (Johnson and Belitz
2009; Wheeler et al. 2015). For this circular area around each site, we determined the
80th percentile in the observed NO3–N concentration in groundwater for the period
2010–2019, to correspond with the 2017 year used for the NO3–N leaching map.

The approach described above was applied firstly by considering all the NGMP sites
together in a single group. In the study by McDowell et al. (2013), a spline was included
in the regression to assess the relationship between NO3–N concentration and land-use
intensity because most sites had high land-use impacts, meaning that the few sites with
low land-use impact may have had insufficient leverage to allow accurate estimation of
the intercept by linear regression. The NGMP dataset has a more even distribution of
sites with high, medium and low land-use impacts, so linear regression slope was seen
as fit for evaluating the relationship between groundwater NO3–N concentration and
land-use intensity, whereby the regression intercept and its confidence intervals were
determined to estimate the 80th percentile for NO3–N concentration in groundwater
in the absence of any NO3–N leached from livestock.

We performed a second evaluation in which the NGMP sites were segregated into hydro-
chemical facies derived from HCA, and each site’s weighting in the regression was scaled
according to its fraction of groundwater aged 5 years or less. This age-weighting approach
was followed to maximise the regression influence for those sites with residence time distri-
butions most closely corresponding to the 2017 year used for the NO3–N leaching map.

The methods applied to the NGMP dataset were then re-applied to the LAWA dataset,
except for the age-weighting approach, which was prevented by the lack of a compilation
of age data from the LAWA sites.
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Integrating results from different methods

We integrated the results from selected methods, time periods and datasets to estimate
reference conditions for NO3–N in New Zealand groundwater. The first step was to
evaluate the strengths and weaknesses of the different methods, time periods and data-
sets, and select a subset of results with sufficient robustness for inclusion in the esti-
mation of reference conditions. The second step was to use a weight of evidence
approach (Linkov et al. 2009; Hope and Clarkson 2014; USEPA 2016) to calculate
selected percentiles (5th, 10th, 20th, 50th, 80th, 90th, 95th) in the NO3–N concentration
under reference conditions. By this method, a weighted average was determined for each
percentile based on the results obtained from the different methods, time periods and
datasets, whereby the contribution of a particular result was weighted by the inverse of
its confidence interval to give higher influence to those results with lower uncertainty.

Results and discussion

Hierarchical cluster analysis

HCA conducted with the NGMP dataset identified three hydrochemical facies of rel-
evance to the present study (Figure 2). At the highest HCA separation threshold, the
NGMP sites were partitioned into Cluster 1 and Cluster 2, representing oxic and
anoxic groundwaters, respectively. Groundwater sites assigned to Cluster 1 were
typified by concentrations of NO3–N that were above the analytical detection-limit
and concentrations of NH4–N, Fe and Mn that were near or below their analytical detec-
tion limits, whereas sites assigned to Cluster 2 displayed the opposite pattern. The shifts
in the concentrations of these redox-sensitive substances reflect their expected behaviour
in response to aquifer microbial processes (Chapelle 2000) and natural water-rock inter-
action (Langmuir 1997). At a lower HCA separation threshold, the oxic groundwaters
were subdivided into Cluster 1A and Cluster 1B, interpreted to represent groundwaters
that were impacted or minimally impacted by human activity, respectively. We infer that
the degree of human impact is a primary driver that differentiates Cluster 1A from
Cluster 1B, as evidenced by the former cluster’s typically higher concentrations of
NO3–N, sometimes also accompanied by elevated concentrations of other substances
such as K, Na and/or Cl. Further lowering the HCA separation threshold allows
additional subclusters to be identified, which within Cluster 1B are inferred to be
driven by aquifer lithology, i.e. clastic or carbonate versus volcanic or volcaniclastic
(Daughney and Reeves 2005); however, these subclusters are not strongly differentiated
by their NO3–N concentrations so are not discussed in this paper.

These three hydrochemical facies represented by Clusters 1A, 1B and 2 in the NGMP
dataset are very similar to those previously identified using the same HCA methods by
Daughney and Reeves (2005) and later by Daughney et al. (2012). Repeated identification
of these same main hydrochemical facies over different time periods likely occurs because
groundwater chemistry is relatively static or otherwise changing slowly at most NGMP
sites (Daughney and Reeves 2006; Moreau and Daughney 2021). For the sites where
groundwater quality has changed more significantly over time, it tends to shift from
one to another of the three hydrochemical facies described in the preceding paragraph,
rather than towards some previously unrecognised hydrochemical facies. This suggests
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that water-rock interaction, aquifer redox processes and human impacts are overarching
and enduring controls on groundwater quality in New Zealand.

Using the three main hydrochemical facies identified by HCA with the NGMP data
collected up to the end of 2003, Daughney and Reeves (2005) interpreted that reference
conditions for NO3–N in oxic, minimally impacted groundwater in New Zealand could
be defined based on the sites assigned to Cluster 1B. Noting that reference conditions
must be defined as a range to reflect natural variation, Daughney and Reeves (2005) pro-
posed that NO3–N concentrations above the 75th percentile or 95th percentile observed
for Cluster 1B were ‘probably’ and ‘almost certainly’ indicative of human impact, respect-
ively, for which the corresponding NO3–N thresholds were 1.6 and 3.5 mg/l (the 80th
percentile was 1.81 mg/l, though this particular threshold was not originally reported).
Data from NGMP sites that were assigned to Cluster 1A were inferred to show a signifi-
cant degree of human impact and so were not used for the estimation of reference con-
ditions for oxic groundwaters. Data from NGMP sites assigned to Cluster 2 were typified
by reduced groundwater with low or below-detection concentrations of NO3–N so were
likewise excluded from the estimation of reference conditions for oxic groundwater.

Figure 2. Dendrogram for the NGMP dataset based on HCA conducted with site-specific median con-
centrations of Br, Ca, Cl, F, Fe, HCO3, K, Mg, Mn, Na, NH4–N, NO3–N, PO4–P, SiO2 and SO4 for samples
collected in the period 2000–2009 (top panel) or 2010–2019 (bottom panel). Terminus of each vertical
line along x-axis represents one NGMP site. Labels correspond to hydrochemical facies described in
the text and number of sites (n) assigned to them.
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However, noting that reduced groundwaters can occur naturally, thresholds were
reported separately for NO3–N in anoxic groundwater (Cluster 2), namely as 0.02 and
0.05 mg/l for the 75th and 95th percentiles, respectively.

Following the same approach using the NGMP dataset in the present study and the
80th percentile as an example, we calculated the corresponding NO3–N concentration
in oxic minimally impacted groundwater (Cluster 1B) to be 1.70 ± 0.23 mg/l if based
on samples collected in the decade 2000–2009, or 1.44 ± 0.24 mg/l if based on samples
collected in the decade 2010–2019 (see Table 1 for other selected percentiles). For com-
parison, the 80th and 90th percentiles for NO3–N concentration in anoxic groundwater
(Cluster 2) were found to be 0.04 ± 0.01 and 0.18 ± 0.02 mg/l (2000–2009 period), or 0.03
± 0.01 and 0.13 ± 0.02 mg/l (2010–2019 period), respectively (95th percentiles could not
be estimated robustly). That the selected percentiles in NO3–N concentration for each
hydrochemical facies changes relatively little between the two ten-year periods used in

Table 1. Selected percentiles ± 95% confidence intervals for NO3–N concentration (mg/l) in oxic,
minimally impacted groundwater as determined in this study using data from two time periods for
the NGMP and LAWA datasets.

Method Sub-Method Percentile

NGMP Dataset LAWA Dataset

2000–
2009

2010–
2019

2000–
2009

2010–
2019

Hierarchical cluster
analysis

5th 0.14 ± 0.09 0.14 ± 0.09 0.07 ± 0.07 0.06 ± 0.07
10th 0.16 ± 0.10 0.17 ± 0.10 0.13 ± 0.09 0.11 ± 0.08
20th 0.28 ± 0.13 0.29 ± 0.11 0.23 ± 0.11 0.20 ± 0.12
50th 0.74 ± 0.18 0.76 ± 0.20 0.66 ± 0.19 0.65 ± 0.21
80th 1.70 ± 0.23 1.44 ± 0.32 1.65 ± 0.28 1.68 ± 0.31
90th 2.10 ± 0.30 1.88 ± 0.25 2.68 ± 0.31 2.61 ± 0.36
95th 2.50 ± 0.28 2.37 ± 0.24 3.36 ± 0.51 3.50 ± 0.43

Comparison to
groundwater age

Constraint line method
based on sites assigned to
Clusters 1A and 1B (oxic
groundwaters)

5th 0.14 ± 0.07 0.14 ± 0.08 N/A
10th 0.16 ± 0.08 0.17 ± 0.10
20th 0.28 ± 0.11 0.29 ± 0.15
50th 0.74 ± 0.21 0.76 ± 0.19
80th 1.79 ± 0.32 1.79 ± 0.35
90th 1.92 ± 0.36 1.99 ± 0.40
95th 2.10 ± 0.44 2.15 ± 0.44

Quantile regression based on
sites assigned to Cluster 1B
(oxic minimally impacted
groundwaters)

5th 0.13 ± 0.05 0.14 ± 0.05
10th 0.16 ± 0.04 0.17 ± 0.12
20th 0.28 ± 0.13 0.30 ± 0.13
50th 0.78 ± 0.27 0.70 ± 0.32
80th 1.61 ± 0.60 1.61 ± 0.53
90th 2.16 ± 0.47 2.26 ± 0.61
95th 2.29 ± 0.35 2.31 ± 0.49

Regression against
a measure of
land-use impact

Linear regression based on
all sites

5th N/A 0.64 ± 0.72 N/A 1.40 ± 0.32
10th 0.70 ± 0.69 1.49 ± 0.33
20th 0.77 ± 0.67 1.61 ± 0.34
50th 1.15 ± 0.67 1.89 ± 0.38
80th 1.42 ± 0.53 2.23 ± 0.43
90th 1.54 ± 0.66 2.45 ± 0.45
95th 1.69 ± 0.97 2.64 ± 0.48

Linear regression based on
sites assigned to Cluster 1A
(oxic minimally impacted
groundwaters)

5th N/A N/A N/A 4.48 ± 0.60
10th 0.81 ± 0.41 4.81 ± 0.62
20th 0.96 ± 0.34 5.07 ± 0.64
50th 1.20 ± 1.01 5.88 ± 0.70
80th 1.87 ± 1.63 6.73 ± 0.77
90th 2.07 ± 1.59 7.17 ± 0.79
95th 2.16 ± 1.69 7.60 ± 0.84

Grey shaded cells contain values used to calculate the weighted averages for reference conditions compiled in Table 2.
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the present study, or in comparison to the earlier study of Daughney and Reeves (2005),
is to be expected if these facies do in fact represent minimally impacted groundwaters,
which would therefore not be affected by changing loadings of NO3–N arising from tem-
poral changes in use of land or water in the area around the monitoring sites.

The same HCA methods cannot be applied to the LAWA dataset because it only
includes analyses of NO3–N, NH4–N, PO4–P, Cl, and electrical conductivity. Therefore,
we used the LDA model to predict each site’s hydrochemical facies based only on these
available parameters. The LDA model was initially calibrated using the NGMP dataset
and was able to correctly apportion 90% of the NGMP sites to their originally assigned
clusters (1A, 1B, 2). Next, we confirmed that the LDA model was able to achieve >80%
accuracy in predicting the hydrochemical facies assignments previously reported by
Daughney and Randall (2009) for a national dataset of over 1000 regional council
groundwater monitoring sites. Using the validated LDA model applied to the LAWA
sites, we calculated that the 80th percentile for NO3–N concentration in oxic, minimally
impacted groundwater (Cluster 1B, n = 278) is 1.65 ± 0.28 mg/l if based on samples col-
lected in the decade 2000–2009, and 1.68 ± 0.31 mg/l if based on samples collected in the
decade 2010–2019 (Table 1). These results are in good agreement with the 80th percentile
values determined from the NGMP dataset for these same time periods. For anoxic
groundwater (Cluster 2) the 80th percentile NO3–N concentration was found to be
0.03 ± 0.01 mg/l for the period 2000–2009 and 0.04 ± 0.01 mg/l for the period 2010–
2019, whereas the 90th percentiles were 0.05 ± 0.02 mg/l for both time periods (results
not tabulated). We caution that requirement to use an LDA model to predict cluster
assignments means that the percentile values derived from the LAWA dataset should
not be used beyond providing general validation of the results from the NGMP dataset.

We note certain advantages and limitations of HCA for estimating reference con-
ditions for groundwater quality. One advantage is that the identification of minimally
impacted groundwater is based on several parameters (e.g. Na, K, Cl) in addition to
NO3–N. This means that groundwater that is only marginally degraded based on its
NO3–N concentration can still be identified as impacted based on other indicators,
thereby allowing for added sensitivity that a univariate method may miss. A key limit-
ation of the HCA method is that it does not provide any definitive information about
the actual processes that differentiate the clusters; instead, these drivers can only be
inferred, which may be difficult if there are several interacting processes involved. For
example, the distinction between Clusters 1A and 1B may be due not only to the

Table 2. Weighted averages for selected percentiles ± 95% confidence
intervals for NO3–N concentration (mg/l) in oxic, minimally impacted
groundwater as determined in this study using the highlighted results
from Table 1.

Percentile NO3–N Concentration

5th 0.14 ± 0.03
10th 0.17 ± 0.03
20th 0.31 ± 0.05
50th 0.76 ± 0.09
80th 1.65 ± 0.12
90th 1.97 ± 0.14
95th 2.32 ± 0.14
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degree of human impact, but also to age of the groundwater or the relative proportions of
groundwater recharge that a site receives from rainfall passage through the soil zone
compared to seepage from rivers (Daughney and Reeves 2005). Some of these limitations
are addressed with the method applied in the following section.

Relationship to groundwater age

Groundwater age distribution parameters for the NGMP sites are provided in Sup-
plementary Material Table 1, based on fitting of LPMs to site-specific time-series
measurements of several age tracers, mainly tritium, SF6 and chlorofluorocarbons. For
most sites, the mean groundwater age inferred in this study is comparable to that orig-
inally reported by Daughney et al. (2010). However, significant differences in the LPM-
derived mean groundwater age do occur for some sites, typically because the additional
age tracer data collected since 2010 now allow for constraint of more complex age distri-
butions, e.g. binary mixing models due to convergence of old and young water flow paths
at the sampled discharge sites. There is also a small minority of NGMP sites at which the
groundwater age distribution is interpreted to have shifted over time, for example due to
changes in rates of recharge or abstraction that could affect flows of groundwater through
some parts of some aquifer systems.

Figure 3 displays the relationships between mean groundwater age and the median
NO3–N concentrations for the NGMP sites. The highest concentrations of NO3–N are
found in sites with young, oxic groundwaters that show evidence of human impact
based on HCA (Cluster 1A). Groundwaters that are oxic but minimally impacted
(Cluster 1B) typically have lower but detectable concentrations of NO3–N, even for
sites with mean groundwater age >100 years. Regardless of mean age, anoxic ground-
waters tend to have very low concentrations of NO3–N. These general relationships
between mean groundwater age and NO3–N concentration have been previously
reported for the NGMP sites (Morgenstern and Daughney 2012).

Estimation of reference conditions for NO3–N via its relationship to mean ground-
water age was first reported by Morgenstern and Daughney (2012) using a visual
graph fitting approach. A threshold of >0.2 mg/l was identified for the NGMP dataset
as separating reference conditions for unimpacted oxic groundwater versus groundwater
affected by ‘low intensity land-use’. We note that this threshold was defined based on
only three NGMP sites. A second threshold of 2.5 mg/l NO3–N was identified to differ-
entiate oxic groundwaters impacted by ‘low-intensity’ versus ‘high intensity’ land-use.
No thresholds were reported for NO3–N in anoxic groundwater.

In the present study, we estimated reference conditions for NO3–N using a constraint
line approach (Hao and Wu 2017). The best-fitting constraint line is a hyperbolic
equation with a maximum NO3–N concentration that approaches an asymptote of
2.2 mg/l as mean groundwater age approaches 250 years (Figure 3), which is towards
the upper end of values reported for the NGMP dataset and the effective limit of inter-
pretability of LPMs based on the age tracers used in this study (Morgenstern and Taylor
2009; Morgenstern and Daughney 2012). Once the constraint line had been fitted, we
determined selected percentiles for NO3–N concentration in oxic minimally impacted
groundwater using all oxic groundwaters (Clusters 1A and 1B) that plot below the hori-
zontal asymptote of the constraint line. Again, using the 80th percentile as an example,
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the threshold for oxic groundwater is determined to be 1.79 ± 0.32 mg/l for the 2000–
2009 period, and 1.79 ± 0.35 mg/l for the 2010–2019 period (Table 1). We note that
there is a possible bias in this approach because the calculation includes some sites
that are inferred to show evidence of human impact based on HCA (i.e. sites assigned
to Cluster 1A). This constraint line approach cannot be used to estimate percentiles in
the NO3–N concentrations for anoxic groundwater.

For comparison we used the NGMP dataset for a second approach, which ignores the
constraint line and instead applies quantile regression using only those sites assigned to
Cluster 1B, i.e. oxic and minimally impacted according to HCA. The slope of the quantile
regression line is not significantly different from zero (p > 0.05) for either period, so the
intercept is taken as the threshold concentration of NO3–N in oxic minimally impacted
groundwater. Again, using the 80th quantile as an example, the regression line’s intercept
was determined to be 1.61 ± 0.60 for data from the 2000–2009 period, or 1.61 ± 0.53 for

Figure 3. Median NO3–N concentration for the periods 2000–2009 (open symbols) and 2010–2019
(closed symbols) versus inferred mean groundwater age for sites in the NGMP dataset. Symbol
colours represent hydrochemical facies. Black lines are derived from the constraint line method:
solid hyperbola is the fitted constraint line; solid and dashed horizontal lines indicate the asymptote
of the constraint line and the 80th percentile for oxic groundwater, respectively. Blue dotted line is
derived from the quantile regression method, indicating the 80th quantile for all Cluster 1B
groundwaters.
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data from the 2010–2019 period (Table 1). This approach can also be applied to anoxic
groundwater (Cluster 2), which yielded estimates of the 80th and 90th percentiles in
NO3–N concentration of 0.05 ± 0.02 and 0.30 ± 0.07 (2000–2009 period), or 0.05 ± 0.01
and 0.35 ± 0.15 (2010–2019 period), respectively (results not tabulated); 95th percentiles
could not be estimated robustly.

Due to the lack of an available compilation of their groundwater age distributions, the
LAWA dataset cannot presently be used to validate the results from the NGMP dataset.
However, some regional and catchment-scale investigations have been undertaken and
reveal generally similar relationships between groundwater quality and groundwater
age as observed in the NGMP dataset (e.g. Morgenstern et al. 2015, 2018, 2019). For
example, concentrations of parameters such as Na, HCO3, SiO2, Fe, Mn and PO4–P
have generally been observed to increase with groundwater age, reflecting likely origin
from natural water-rock interaction, whereas concentrations of parameters such as
NO3–N, Cl and SO4 have generally been observed to be higher in younger groundwaters,
suggesting that they may be sourced from human activities and/or subject to reactions
that tend to cause their concentrations to decrease over time (e.g. denitrification, sulphate
reduction).

We note certain advantages and limitations of estimating reference conditions for
groundwater quality based on its relationship to groundwater age. One advantage is
that groundwater age can be helpfully compared to the history of land use in the vicinity
of the monitoring site, which provides constraint on the level of human impact and
therefore the NO3–N concentration that might be expected. We point out that the
LPMs applied in this study follow the assumption that the groundwater age distribution
at each site is constant over the long term, despite seasonal fluctuations that may exist at
some sites (e.g. Toews et al. 2016). Constancy of groundwater age distribution is a reason-
able assumption for New Zealand groundwater systems, which experience temperate cli-
mates and are not generally highly exploited, but we acknowledge that this assumption
may be violated if this method is applied elsewhere. A disadvantage of the groundwater
age approach is that, as a univariate method, the relationships to groundwater quality are
explored only one parameter at a time. However, as shown in this study, this limitation
can be overcome by categorising the monitoring sites using a multivariate hydrochemical
method such as HCA. Another disadvantage of the groundwater age method is that, like
HCA, it does not provide any definitive information about the actual land-use intensity
that occurred in the vicinity of a well at the time of recharge. This limitation is addressed
with the method applied in the following section.

Regression against a measure of land-use impact

Figure 4 displays plots of the 80th percentile in the measured NO3–N concentration in
groundwater at each site compared to the average NO3–N leaching rate in a circular
area around that site (similar plots were generated for other percentiles, not shown).
The results were not significantly different for circular area radii from 0.5 to 5.0 km
(p > 0.1), so all following results are based on a radius of 2.0 km. We are unable to accu-
rately quantify the uncertainties in the average NO3–N leaching rates depicted in Figure 4
because such uncertainties were not reported by Ausseil and Manderson (2018). These
data were generated using a Nutrient Budget model (Overseer), whose uncertainty
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based on changing climate and soil data is estimated to be 27 ± 9% (Tavernet and Harper
2022), and we acknowledge that modelled NO3–N leached from land can be highly vari-
able within and between farms according to how they are managed (Parliamentary Com-
missioner for the Environment 2018).

Firstly, we considered all the NGMP sites together in a single group (Figure 4A).
Linear regression produces a slope that is significantly different from zero (p < 0.01).
The regression line has an intercept of 1.42 ± 0.53 mg/l, which is interpreted to be the
80th percentile for NO3–N concentration in groundwater in the absence of any NO3–

N leached from livestock (Table 1).
We performed a second evaluation in which the NGMP sites were segregated into

hydrochemical facies, and each site’s weighting in the regression was scaled according
to its fraction of groundwater aged 5 years or less (Figure 4B). This grouping of the
NGMP sites according to their hydrochemical facies helps to understand any observed
relationships between NO3–N leaching rate and the observed NO3–N concentrations
in groundwater, and the age-weighting maximises the regression influence for those
sites with residence time distributions most closely corresponding to the 2017 year

Figure 4. 80th percentile in NO3–N concentration for the period 2010–2019 versus average modelled
NO3–N leached from livestock in 2017 within a 2 km radius of each site (note differences in axis scales),
with corresponding linear regression lines and 95% confidence limits (shaded areas): A, All NGMP sites
plotted together as a single group. B, NGMP sites segregated by hydrochemical cluster with individual
regression lines; symbol size is scaled to the fraction of groundwater that has age less than 5 years. C,
All LAWA sites plotted together as a single group. D, LAWA sites segregated by hydrochemical clusters
predicted by LDA.
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used for the NO3–N leaching map. Note that sites assigned to Cluster 2 are anoxic and
hence denitrification is likely to have removed almost all NO3–N from the groundwater,
which explains the lack of discernible relationship to mapped NO3–N leached from live-
stock. Sites assigned to Clusters 1A and 1B are oxic, so are more likely to show relation-
ships between NO3–N concentration and the mapped NO3–N leached from livestock.
Based on their hydrochemistry, sites assigned to Cluster 1A are inferred to show evidence
of human/agricultural impact and so, following the approach of McDowell et al. (2013),
the 80th percentile for NO3–N concentration in minimally impacted groundwater can be
inferred from the intercept of the regression line (1.87 ± 1.63 mg/l). By comparison, sites
assigned to Cluster 1B are interpreted to have little or no evidence of human impact. The
Cluster 1B regression line has an intercept of 0.99 ± 0.45 mg/l and a slope that is not sig-
nificantly different from zero (p > 0.1). In other words, even though NO3–N leaching from
livestock is mapped in the vicinity of some Cluster 1B sites, the impacts of this leaching are
not observable as elevated NO3–N concentrations in the groundwater. Given that Cluster
1B groundwaters are predominantly oxic and hence would have low likelihood for the
occurrence of denitrification, we suggest that a lack of relationship between NO3–N con-
centration in the groundwater and mapped NO3–N leaching from livestock could indicate
that these sites are recharged predominantly from river seepage rather than rainfall passage
through the soil zone, and/or recharged from an area outside the 2.0 km radius used in this
study. In either case, the similarity of the intercepts for the Cluster 1A and Cluster 1B
regression lines provides independent but very similar estimates for the 80th percentile
for NO3–N concentration in oxic, minimally impacted groundwater in New Zealand.
Finally, the regression line for Cluster 2 has an intercept of 0.05 ± 0.45 mg/l and a slope
that is not significantly different from zero (p > 0.1), providing an estimate of the 80th per-
centile NO3–N concentration that would be expected for anoxic groundwaters. Similar
approaches can be used to derive estimates for other percentiles of NO3–N concentration
in oxic and anoxic groundwater under reference conditions (Table 1).

We repeated the analyses described above using the LAWA dataset. Again, using the
80th percentile as an example, linear regression based on all LAWA sites as a single group
(Figure 4C) yielded an intercept of 2.23 ± 0.43 mg/l (Table 1), providing a similar esti-
mate as derived from the NGMP dataset for of the 80th percentile for NO3–N concen-
tration in groundwater in the absence of any NO3–N leached from livestock. As noted
above, including all the LAWA sites in the regression does not account for differences
in the main hydrochemical drivers such as redox condition or potential degree of
human impact. We therefore developed separate regression lines by categorising the
LAWA sites according to their hydrochemical facies as based on the LDA model
(Figure 4D). LPM parameters are not presently compiled for the LAWA sites, so it is
not possible to weight each site’s influence in the regressions according to its ground-
water age distribution. For the 80th percentile, the resulting regression for Cluster 1A
sites yields an intercept of 6.73 ± 0.77 mg/l, which is markedly different from the result
obtained with the same method applied to the NGMP sites (1.87 ± 1.63) and indeed
from all other methods and datasets employed in this study (Table 1). Further, some
LAWA sites assigned to Cluster 1B have markedly elevated NO3–N concentrations.
We conclude that the uncertainties of the LDA model (potentially causing some sites
to be assigned to the incorrect cluster) and the lack of groundwater age information
hampers the utility of this approach when applied to the LAWA dataset.

JOURNAL OF THE ROYAL SOCIETY OF NEW ZEALAND 19



We identify certain advantages and limitations of estimating reference conditions for
groundwater quality based on regression against a measure of land-use impact. One clear
advantage is that land-use impacts are quantified for each site, whereas the other methods
employed in this study can only infer the extent of land-use impacts from indirect
proxies. A challenge is to account for each site’s capture zone, groundwater transit
time, and any hydrochemical processes, such as denitrification, any of which could con-
found the relationship between NO3–N leaching rates and the observed concentrations
of NO3–N in groundwater. As shown in this study, these challenges can be reasonably
overcome through combined use of a circular area surrogate for the capture zone,
LPMs to describe groundwater age distribution, and HCA to assign sites to distinct
hydrochemical facies.

Reference conditions for NO3–N in New Zealand groundwater

Results obtained from different methods, datasets and time periods

The previous sections show that there are strengths and weaknesses for each of the three
methods used to estimate reference conditions in this study. When applied to a single
dataset and time period, the three methods generally produce very similar estimates
for the selected percentiles in NO3–N concentrations expected for oxic, minimally
impacted groundwater in New Zealand (Table 1). We conclude that there is no clear
reason to favour one method over another, and so results from all three methods
should be included in the weight of evidence approach for estimation of NO3–N concen-
trations under reference conditions. The case of estimating reference conditions for
anoxic groundwater is discussed later in this section.

The previous sections also show that all three methods can be applied to the NGMP
dataset, whereas there are limitations for the application of any of the three methods to
the LAWA dataset. For the HCA method, the LAWA dataset lacks most of the analytical
parameters so requires an LDA model to predict cluster assignments, which introduces
uncertainty to the estimation of reference conditions. The LAWA dataset lacks the
required information for the groundwater age method. For the method of regression
against a measure of land-use impact, the results from the LAWA dataset suggest a
much higher NO3–N concentration in oxic minimally impacted groundwater than is
estimated from any other methods and datasets employed in this study. Aside from
these limitations associated with application of each method, the LAWA dataset may
also contain a systematic bias because many of the sites are selected to monitor at-risk
aquifers where elevated NO3–N concentrations are already known to exist (Daughney
et al. 2012). We therefore conclude that results from the LAWA dataset should not be
used in the weight of evidence approach, but instead should only be used for validation
and cross-comparison of the results obtained from the NGMP dataset.

The previous sections also show that very similar results are obtained for the two
periods (2000–2009 and 2010–2019) for most methods and datasets (Table 1). This
finding is to be expected because groundwater chemistry is relatively static or otherwise
changing quite slowly at most long-term monitoring sites in New Zealand (Moreau and
Daughney 2021). In turn this suggests that the natural processes that influence NO3–N
concentrations under reference conditions are relatively steady over the two ten-year
periods used in this study. Natural processes that could influence NO3–N concentrations
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in groundwater could include the El Niño-Southern Oscillation climate pattern (Fleming
and Quilty 2006; Snelder et al. 2021), which could affect volumes of groundwater
recharge or discharge, temperature, or fluxes of atmospheric nitrogen deposition, any
of which could influence groundwater NO3–N concentrations. We therefore conclude
that results from both ten-year time periods should be included in the weight of evidence
approach.

Based on the discussion above, we estimated reference conditions for oxic ground-
water using results from the three different methods and both ten-year time periods
but applied only to the NGMP dataset (Table 2). By this approach, the weighted averages
and corresponding 95% confidence intervals for the 50th, 80th, 90th and 95th percentiles
of NO3–N in oxic, minimally impacted groundwater were found to be 0.76 ± 0.09, 1.65 ±
0.12, 1.97 ± 0.14 and 2.32 ± 0.14, respectively.

Anoxic groundwaters can also exist under natural conditions but tend to have
NO3–N concentrations that are near or below the analytical detection limit. As such,
this study treats anoxic groundwaters as a separate population with its own definition
of reference conditions (Daughney and Reeves 2005). This study has shown that only
some of the methods are suitable for anoxic groundwater, but across both periods
these yielded weighted average estimates of the 80th and 90th percentiles of NO3–N
of 0.04 ± 0.01 and 0.16 ± 0.01, respectively (results not tabulated). The 95th percentile
for NO3–N in anoxic groundwater could not be reliably estimated from the methods
used in this study.

Overall, the strong similarity in the estimates of reference condition derived from the
different methods, time periods and datasets suggest that methodological approaches
introduced relatively little bias. We acknowledge that the replacement of censored
values with their corresponding detection limits may have affected the application of
certain methods to certain sites, particularly those sites with very low NO3–N concen-
trations. For example, the observed shift in the proportion of sites assigned to Cluster
1 vs Cluster 2 between the two time periods (Figure 2) may partially reflect a methodo-
logical artefact arising from the treatment of censored values. However, the definition of
reference conditions, particularly for the upper percentiles in NO3–N, are much more
dependent on the apportioning of sites between Cluster 1A and Cluster 1B, which is
observed to be constant between the two time periods.

We caution against using the results from this study to estimate a single definition of
reference conditions that combines the expected NO3–N concentration in both oxic and
anoxic groundwater. First, this study has been unable to reliably estimate the 5th, 10th,
20th, 50th and 95th percentiles for NO3–N in anoxic groundwater, so these results are
not available for merging with the equivalent percentiles for oxic groundwater.
Second, the methods used in this study can determine whether groundwater is anoxic,
but not whether it is unequivocally unimpacted by human activity (while NO3–N is a
clear marker for human impact in oxic groundwater in New Zealand, the typical low con-
centrations in anoxic groundwater environments does not necessarily indicate a lack of
human impact). Third and most importantly, to estimate a single distribution of NO3–N
concentration for all unimpacted groundwaters would require knowledge of the pro-
portion of oxic versus anoxic groundwater across the entire country, which to date has
only been estimated for selected depths (Wilson et al. 2020), not volumetrically across
all aquifer systems.
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Comparison to previous studies

The results from this study are in good general agreement with previously reported
thresholds for NO3–N in groundwater under reference conditions (Table 3). For
example, European guidance suggests a 90th percentile of 2.26 mg/l NO3–N (10 mg/l
as NO3) (Pauwels et al. 2007), which is similar to the value of 1.97 ± 0.14 derived in

Table 3. Comparison of results from this study (grey shading) to examples of previously reported
thresholds for NO3–N concentration in groundwater under reference conditions.

NO3–N Threshold

Location Notes Methods ReferenceConcentration Threshold type

0.2 N.R. New Zealand (national
scale)

Oxic groundwaters
only

1 Morgenstern and
Daughney (2012)

0.56 95th percentile Mountainous area of Jeju
Island, South Korea

2 Koh et al. (2009)

∼1 N.R. England and Wales Upland areas only 2 Shand et al. (2007)
1 to 3 N.R. Europe 2 Shand and Edmunds

(2008)
1.08 to 1.74 90th percentile Banat Groundwater

Body, Romania
1, 3 Radu et al. (2010)

1.13 N.R. West Bank, Palestine N.R. Anayah and Almasri
(2009)

1.24 95th percentile Mountainous area of Jeju
Island, South Korea

2 Koh et al. (2009)

1.44 95th percentile Chalk Aquifer, United
Kingdom

4 Limbrick (2003)

1.6 75th percentile New Zealand (national
scale)

Oxic groundwaters
only

5 Daughney and
Reeves (2005)

1.65 ± 0.12 80th percentile New Zealand (national
scale)

Oxic groundwaters
only

1, 5, 6 This study

1.85 90th percentile Tarim River Basin,
Northern China

1 Huo et al. (2012)

1.97 ± 0.14 90th percentile New Zealand (national
scale)

Oxic groundwaters
only

1, 5, 6 This study

∼2 N.R. Minqin Basin, Northwest
China

1 Edmunds et al.
(2006)

2.17 90th percentile Loess Plateau, Northern
China

1 Huo et al. (2012)

2.26 90th percentile Europe 1, 3 Pauwels et al. (2007)
2.32 ± 0.14 95th percentile New Zealand (national

scale)
Oxic groundwaters
only

1, 5, 6 This study

3 N.R. United States (national
scale)

N.R. Madison and Brunett
(1985)

∼3 to 4 N.R. England and Wales Non-upland areas
only

2 Shand et al. (2007)

3.25 90th percentile North China Plain,
Northern China

1 Huang et al. (2012)

3.5 95th percentile New Zealand (national
scale)

Oxic groundwaters
only

5 Daughney and
Reeves (2005)

3.9 90th percentile Bono, Ahafo and Bono
East regions, Ghana

7, 8 Manu et al. (2022)

∼5 N.R. Upper Pantanoso Stream
Basin, Argentina

N.R. Costa et al. (2002)

6.7 N.R. Chalk Aquifer, United
Kingdom

Confined parts of
aquifer only

2 Edmunds et al.
(2003)

7.5 N.R. Chalk Aquifer, United
Kingdom

Unconfined parts of
aquifer only

2 Edmunds et al.
(2003)

Rows are ordered according to increasing NO3–N threshold concentration. N.R. = Not reported. Methods are: 1 = Com-
parison to groundwater age; 2 = Cumulative probability distribution; 3 = Selection methods; 4 = Assessment of histori-
cal data; 5 = Hierarchical cluster analysis; 6 = Regression against measure of land-use impact; 7 = Iterative outlier
removal; 8 = Gaussian mixture model.
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this study for minimally impacted oxic groundwater in New Zealand. Other studies listed
in Table 3 have reported 90th percentile thresholds in the range from 1.08 to 3.25 mg/l
NO3–N, and 95th percentile thresholds in the range from 0.56 to 3.5 mg/l.

There are three factors that complicate a more detailed comparison between results
from this study and the earlier work (see Table 3). First, several of the previous studies
did not specify the percentile corresponding to their reported threshold. For example,
human influence on groundwater has been inferred for NO3–N concentrations above
3 mg/l in the United States (Madison and Brunett 1985) or above 3–4 mg/l in England
and Wales (Shand et al. 2007), but these studies did not state whether their reported
thresholds correspond to the 80th, 90th, 95th percentile or some other metric. Second,
most previous studies have not reported the confidence intervals or uncertainty of
their reported thresholds. A related issue is that most previous studies have used only
one method for the estimation of reference conditions. As a result, across previous
studies it is not straightforward to compare the different estimates for any single
threshold from a perspective of statistical significance. Third, from some of the previous
studies it is not clear whether the reported thresholds were derived from oxic and anoxic
groundwaters separately, as in this study, or together. This study has shown that there
can be considerable variation in groundwater chemistry depending on aquifer redox
status, groundwater ages, and land management, which means that determination of a
robust and representative reference conditions should ideally be based on more than
one method, particularly to assess whether there is cause for different definitions of refer-
ence conditions for different aquifer types, lithologies or redox statuses. Despite these
challenges, we conclude that the percentiles derived in this study for NO3–N in oxic,
minimally impacted groundwater in New Zealand are generally similar to previous esti-
mates from many other parts of the world.

It is also instructive to compare this study’s national-scale estimates for reference con-
ditions to previous local-scale investigations of NO3–N concentration in New Zealand
aquifers that were inferred to be minimally impacted. We caution that such comparisons
must be made with care because, as noted in Introduction section, previous groundwater
investigations in pristine catchments are limited in number, not necessarily designed to
infer thresholds for minimally impacted conditions, and do not yet provide representa-
tive coverage of all important groundwater settings in New Zealand. This said, some pre-
vious local-scale investigations in New Zealand have reported minimally impacted oxic
groundwaters with NO3–N concentrations falling in the lower half of the range of refer-
ence conditions as derived in this study. Such previous site- and catchment-scale inves-
tigations include but are not limited to the fractured marble aquifer system of Te
Waikoropupū Spring (0.3–0.46 mg/l, Moreau 2021) and selected sites in the pumice
and ignimbrite aquifers of the Lake Taupo catchment (0.1–0.3 mg/l, Morgenstern
2008; Morgenstern and Daughney 2012), the ignimbrite and rhyolite aquifers of the
Lake Roturua catchment (0.4–0.7 mg/l, Morgenstern et al. 2004), and some parts of
the gravel aquifers of the Heretaunga Plains (0.1–0.5 mg/l, Morgenstern et al. 2018).
These lower NO3–N concentrations may reflect settings with nitrate leaching rates at
the lower end expected under certain types of native forest (0–2.5 kg N per ha per
year, Davis 2014). These lower NO3–N concentrations may also indicate some degree
of denitrification, which is possible even in aquifer conditions that appear to be oxic
overall (Utom et al. 2020). Denitrification in oxic aquifers has been noted in New
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Zealand (Martindale et al. 2019) and could be accentuated in several of the local-scale
studies cited in this paragraph which had groundwaters with mean age of >50 or even
>100 years.

Likewise, some previous local-scale investigations in New Zealand have reported
minimally impacted oxic groundwaters with NO3–N concentrations falling in the
upper half of the range of reference conditions as derived in this study. We acknowledge
that in some cases the slightly elevated NO3–N concentrations may reflect a low level of
human impact. However, some pristine groundwaters in the Lake Rotorua and Lake
Taupo catchments can have NO3–N concentrations from 0.8 to 1.8 mg/l (Morgenstern
et al. 2004; Morgenstern 2008), which due to geothermal activity may experience
increased nitrate leaching rates even in areas of native vegetation (Davis 2014), as well
as inflows of nitrogen from the subsurface. Groundwater NO3–N concentrations of ca.
2 mg/l are also observed in the Takaka limestone aquifer (Stevens 2010), a concentration
commensurate with overseas studies suggesting that nitrification of organic-N may occur
within such karstic systems (Angel and Peterson 2015; Musgrove et al. 2016), and poten-
tially other lithologies as well (Utom et al. 2020). Aside from geothermal influence or
nitrification of organic-N, other natural processes that could potentially contribute to
comparable NO3–N concentrations (ca. 2 mg/l) include relatively high leaching losses
in areas of native nitrogen-fixing plants (Dollery et al. 2019), or concentration of
NO3–N due to groundwater evapotranspiration. Further investigations are required to
determine whether these processes are important in New Zealand groundwater systems.

Use of estimates of reference conditions for groundwater management

Individual jurisdictions make the policy choice of whether an estimate of reference con-
ditions should be used in groundwater management. For example, in Europe, under the
Water Framework Directive (2000/60/CE) and its daughter directive, the Groundwater
Directive (2006/118/EC), information on reference conditions is used as a basis to
develop and implement river basin management plans (De Stefano et al. 2013; Urresti-
Estala et al. 2013). By comparison, in New Zealand, use of reference conditions for ground-
water management is not specifically mandated, but the National Policy Statement for
Freshwater Management does define ‘attribute bands’ for certain parameters in surface
water that in some cases include thresholds that are representative of minimally disturbed
conditions (New ZealandMinistry for the Environment 2022). Regional authorities in New
Zealand can implement groundwater management objectives and thresholds more strin-
gent than required through national policy, but to date there has been little application
of reference conditions for NO3–N for this purpose in regional policies or plans.

Where a choice is made to manage groundwater based on reference conditions, indi-
vidual jurisdictions must select the threshold to be applied. For example, for implemen-
tation of the Groundwater Directive, the 90th percentile is recommended as an
appropriate threshold for defining reference conditions for groundwater quality where
location-specific studies have not determined any other threshold as more appropriate
(Pauwels et al. 2007). In New Zealand, the 20th and 80th percentiles are used as
thresholds to define Default Guideline Values for surface water quality, but no analogous
thresholds have yet been included for groundwater quality (ANZG 2018).

We propose that the 80th percentile is an appropriate default threshold for character-
isation of reference conditions in New Zealand groundwater, given that this same default
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threshold is already applied for surface waters. Note that such a default guideline value is
not necessarily a management limit or target that needs to be met; rather, exceedance
may simply be intended to serve as a prompt to consider whether further investigation
should be undertaken to determine whether aquatic ecosystems are sufficiently protected
from human impacts (see ANZG 2018). Note also that the 80th percentile is simply rec-
ommended as a default threshold, allowing water management entities to undertake
investigations and define different percentile-based thresholds for specific aquifers or
parts of aquifers, depending on the level of protection deemed necessary.

Once a percentile-based threshold has been selected for reference conditions, it can be
compared against measured concentrations when reporting on the state of the environ-
ment. Ideally, comparison to the reference conditions should also take account of uncer-
tainty in the value of whatever percentile-based threshold used (e.g. threshold +
confidence limit). We suggest that applications in environmental reporting should aim
to clearly convey that a proportion of monitoring sites is expected to exceed the threshold
even under minimal human impacts; for example, 20% of monitoring sites will have
median NO3–N concentrations higher than the 80th percentile identified for reference
conditions. We also caution that, in our experience, precision in language is needed
for effective use of descriptions of estimated reference conditions in state of the environ-
ment reporting. We suggest wording such as ‘there is 95% confidence that 80% of oxic
minimally impacted groundwaters in New Zealand have 10-year median NO3–N con-
centrations equal to or less than 1.77 mg/l’. While this wording is a bit cumbersome, it
clearly indicates the selected percentile plus its upper 95% confidence limit, explains
that the relevant monitoring metric is a long-term median, and conveys that the con-
clusion pertains only to oxic, minimally impacted groundwaters.

Conclusions

This study has illustrated that reference conditions for NO3–N in groundwater are help-
fully estimated through the application of a range of complementary methods, datasets,
and monitoring time periods. At the national scale in New Zealand, we estimate that the
80th percentile in NO3–N concentration is 1.65 ± 0.12 for oxic, minimally impacted
groundwater and 0.04 ± 0.01 for anoxic groundwater, using data collected through the
National Groundwater Monitoring programme over the period 1 January 2000 to 31
December 2019. In keeping with the approach used for New Zealand surface waters
(ANZG 2018), we suggest that the 80th percentile should be used as national default
threshold for reference conditions, for comparison to the NO3–N concentrations
observed in environmental monitoring programmes, except where site-specific investi-
gations have indicated that different threshold values should be used. While this study
has focussed on NO3–N, the same approaches could be used for estimation of reference
conditions for other groundwater quality variables.
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